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ABSTRACT
Persistent memory’s (PMem) byte-addressability and persistence
at DRAM-like speed with SSD-like capacity have the potential to
cause a major performance shift in database storage systems. With
the availability of Intel Optane DC Persistent Memory, initial bench-
marks evaluate the performance of real PMem hardware. However,
these results apply to only a single server and it is not yet clear how
workloads compare across di�erent PMem servers. In this paper,
we propose PerMA-Bench, a con�gurable benchmark framework
that allows users to evaluate the bandwidth, latency, and operations
per second for customizable database-related PMem access. Based
on PerMA-Bench, we perform an extensive evaluation of PMem
performance across four di�erent server con�gurations, containing
both �rst- and second-generation Optane, with additional parame-
ters such as DIMM power budget and number of DIMMs per server.
We validate our results with existing systems and show the impact
of low-level design choices. We conduct a price-performance com-
parison that shows while there are large di�erences across Optane
DIMMs, PMem is generally competitive with DRAM. We discuss
our �ndings and identify eight general and implementation-speci�c
aspects that in�uence PMem performance and should be considered
in future work to improve PMem-aware designs.
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1 INTRODUCTION
Both research and industry have awaited the arrival of persis-
tent memory (PMem) as a new layer in the storage hierarchy for
many years. PMem promises byte-addressability and persistency
at DRAM-like speed with SSD-like capacity. These characteris-
tics have the potential to cause a major performance increase in
storage systems, such as databases and key-value stores. Thus, re-
search on system design incorporating PMem was published long
before real PMem hardware was available [1, 46, 53]. Now that
byte-addressable, persistent memory is �nally available commer-
cially, Intel’s Optane DC Persistent Memory has received a lot of
attention in initial performance evaluations [10, 13, 52, 56]. These
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evaluations provide valuable insights into the general performance
and unique characteristics of �rst-generation Optane.

Research on data structures [7, 36, 39] and storage systems [5, 8,
35] that incorporate these insights often have to perform additional
hardware-speci�c micro benchmarks to understand the speci�c
nuanced PMem behavior for their expected workloads. Initial re-
search shows that Optane’s performance is highly dependent on the
workload with major di�erences between read and write behavior.

Due to limited availability and high prices, researchers often have
access to only one PMem server. Thus, new systems built for PMem
are designed, implemented, and optimized on a single server with
a single combination of PMem, DRAM, and CPU. However, many
factors impact PMem performance that are not yet well understood,
e.g., the DIMMs’ size and power budget or the number of DIMMs in
the server. As PMem is a very new technology, it is unclear howwell
these initial designs generalize across PMem con�gurations. On top
of various con�gurations, with the availability of second-generation
Optane, new performance characteristics are introduced.

Based on the con�guration space and workload-tailored micro-
benchmarks of previous work, we identify the need for a compara-
ble workload-driven analysis of PMem.We propose PerMA-Bench, a
con�gurable benchmark framework that analyzes the bandwidth, la-
tency, and operations per second for customizable database-related
PMem access. In PerMA-Bench, we pre-de�ne various workloads
that cover the maximum achievable performance of core access pat-
terns (sequential/random reads/writes), as well as a wide range of
realistic, database-related access patterns, such as updates, lookups,
and scans in tree and hash indexes. These complex patterns in-
clude pointer-chasing loads, mixed read/write access, and hybrid
PMem/DRAM access. Additionally, PerMA-Bench allows users to
run custom workloads tailored toward their design choices. With
PerMA-Bench, we propose a tool that provides insight into the
performance of PMem at a general and workload-speci�c level.
Users can explore the performance of new access patterns but also
validate existing designs. Based on these �ndings, users can validate
their design choices without having to write their own benchmark
application and �nd areas of improvement in existing designs.

Based on PerMA-Bench, we perform the �rst extensive evalua-
tion of Optane for database workloads across various DIMM sizes
of the �rst and second generation. We compare the performance
of all three DIMM sizes of 100 Series Optane and one DIMM size
of the 200 Series. Additionally, we show the impact of varying the
number of DIMMs, DIMM power budgets, and memory bus speeds.

We validate our results with existing implementations and show
that they do not fully utilize the performance improvements across
Optane generations. We show that the choice of persist instruction
has a high performance impact and that avoiding explicit �ushes
in eADR does not always yield the best results. Based on our re-
sults, we identify and discuss eight aspects that future work should
take into account when designing PMem-aware systems. With the
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Figure 1: Standard PMem access modes.
availability of more PMem hardware, research has to consider more
than one setup to achieve general PMem-optimized designs.

In addition to PMem’s performance, its price-performance is
important to determine whether PMem is suitable for users’ needs.
In this paper, we perform a price-performance comparison of var-
ious server con�gurations. Our comparison shows that PMem’s
price-performance is competitive with that of DRAM and is often
even better. Thus, in addition to providing persistence, PMem can
act as a larger, cost-e�ective general memory when used correctly.
In summary, we make the following contributions:
1) We propose PerMA-Bench, a con�gurable benchmark frame-

work to analyze bandwidth, latency, and operations per second
for customizable database-related PMem access.

2) We perform an extensive evaluation of PMem performance
across four PMem servers and additional per-server con�gu-
rations to show the impact of individual server setups on band-
width utilization and latency.

3) We compare the price-performance for key workloads across all
servers and show that while there are large di�erences across
Optane, PMem is generally competitive with DRAM.

4) We discuss eight general and implementation-speci�c aspects
that in�uence the performance of PMem and need to be taken
into account for the design of future PMem-aware systems.
The remainder of the paper is structured as follows. In Section 2,

we brie�y introduce PMem and its access methods. We then intro-
duce the PerMA-Bench framework in Section 3. In Section 4, we
present PerMA-Bench results on various hardware con�gurations,
which we then use in Section 5 to discuss the price-performance
of PMem. Finally, we discuss our �ndings (Section 6) and related
work (Section 7), before concluding in Section 8.

2 PERSISTENT MEMORY
In this section, we �rst give a short overview of PMem technologies.
Then, we present how developers access and interact with PMem.

2.1 Persistent Memory Types
Large-scale persistent memory is currently based on one of two
designs: 3D XPoint (NVDIMM-P) or DRAM + �ash (NVDIMM-
N ). 3D XPoint, developed by Intel and Micron, is the underlying
technology of Optane [19]. It is the only publicly available true
PMem, in which a single storage medium allows for both byte-
addressability and persistence. DRAM + �ash storage designs are
employed in PMem o�ered by, e.g., HPE [11]. These battery-backed
NVDIMM-Ns �ush their state to �ash chips on power failure.

According to the JEDEC standards, NVDIMM-Ns are seen as
regular DRAM by the server while NVDIMM-Ps are viewed as sepa-
rate storage with additional changes to the DDR4 protocol [25, 26].
Future PMem technology is expected to follow the NVDIMM-P stan-
dard, as this allows for larger capacity and extended functionality,

Figure 2: Writing to NVDIMM-Ps from the CPU.

while NVDIMM-Ns are limited by DRAM [27]. Currently, Optane
PMem is the only available NVDIMM-P implementation. Various
other PMem designs have been announced or are actively developed.
These include Nano-RAM [38], phase change memory [31, 47, 58],
resistive RAM [4], and magnetoresistive RAM [14].

While NVDIMM-Ns have been available for many years, they
have not achieved widespread adoption. On the other hand, Optane,
as a new technology, has received a lot of attention in academia and
initial use in industry, e.g., in SAP HANA [16]. As NVDIMM-Ns
are essentially DRAM and have DRAM performance, we focus our
evaluation on NVDIMM-Ps in the form of Optane.

2.2 Accessing Persistent Memory
The Storage Networking Industry Association (SNIA) de�nes an
NVM Programming Model (NPM) [48], which speci�es a uni�ed
access model for PMem. This model allows for the integration of a
wide range of storage technologies. We show the two PMem access
modes of this model in Figure 1. Applications either access PMem
via regular �lesystem interfaces (shown on left side) using calls such
as fopen, fread, fsync, or they access PMem via memory-mapping
(shown on right side) using calls such as mmap, load, store.

The �lesystem access allows existing applications to use PMem
as a drop-in replacement for common disk-based interaction, while
the second mode allows applications to use PMem identically to
DRAM. The programming model allows for memory mapping of
�les, i.e., combining both modes. In this case, �les are used to logi-
cally structure raw memory chunks but PMem is accessed directly
without the overhead of regular �le I/O.

An important distinction between memory mapping �les on
disk and PMem is that traditionally data is copied to a page cache
in DRAM, which is then modi�ed and �ushed back. When map-
ping PMem, the page is accessed directly and not copied to DRAM,
which is possible through PMem’s byte-addressability. This, how-
ever, changes the failure granularity of data modi�cation. Filesys-
tems provide crash consistency for �le I/O, allowing developers
to rely on the �lesystem for atomic writes. When using PMem
via memory mapping, there are no such guarantees, as data is ac-
cessed and modi�ed via regular load/store instructions from the
CPU. Thus, developers must explicitly control data persistence and
handle low-level crash consistency in the application themselves.

To describe the necessary steps for developers to ensure correct
data persistence and potential issues that arise around it, we show a
simpli�ed connection of a CPU and an NVDIMM-P in Figure 2. This
model is based on Intel’s Xeon processors [22] and Optane. A CPU
contains one or more integrated memory controllers (iMCs), which
are directly connected to PMem via memory channels. To write data
to PMem, the CPU must �ush cache lines to a write pending queue
(WPQ) within an iMC. TheWPQ then issues the write to the correct
PMem device. PMem and the WPQs constitute the asynchronous



DRAM refresh domain (ADR), in which persistence is guaranteed.
Once a cache line enters the WPQ it is guaranteed to be persisted
even in case of power loss. While WPQs are Intel-speci�c, they are
based on the NVDIMM-P standard that describes a write bu�ering
mechanism. Future PMem is likely to work similarly.

Data in the caches is not persisted. Programmers must explicitly
control cache line �ushes to ensure persistence. On Intel CPUs,
programmers can use, e.g., clflush (�ush w/ invalidate), clwb
(�ush w/o invalidate), or ntstore (bypass caches). Additionally to
explicit �ushes, data might be randomly evicted from the cache,
resulting in unexpected data persistence. As current CPUs provide
only 8 Byte atomic writes, random 64 Byte cache line evictions may
cause an inconsistent state after a crash for modi�cations larger
than 8 Byte. Thus, programmers must carefully design �ne-grained
PMem data access to ensure application correctness.

Additionally, programmers have to ensure correct store ordering.
Modern compilers and CPUs may re-order instructions to improve
performance, e.g., through better pipelining. However, this may
lead to re-ordering of persist instructions, resulting in correctness
bugs [37]. To avoid such re-ordering, programmers must explicitly
issue, e.g., an sfence instruction on x86 [23].

Correctly moving data from CPU caches to PMem burdens pro-
grammers due to these correctness issues. It also incurs performance
penalties due to additional CPU instructions. However, solutions
exist to mitigate the correctness issues and performance penalties.
Intel’s 3rd Generation Xeon processors introduce an enhanced ADR
(eADR) [20]. This includes all caches in the ADR, i.e., ensuring the
persistence of all cached data in case of power loss. This new design
removes the necessity of explicit �ushing but still encounters ran-
dom (partial) eviction. A recent study �nds that missing �ushes are
a common mistake in various PMem applications and libraries [42].
Thus, an eADR server protects the user from this class of bugs.

3 INTRODUCING PERMA-BENCH
In this section, we introduce PerMA-Bench, a benchmark frame-
work for persistent memory access. When designing new systems
or database components, it is important to know the performance of
the underlying memory access. This understanding allows users to
tune their system towards better PMem utilization. PerMA-Bench
supports basic and complex memory access patterns to evaluate the
performance of PMem. Basic access patterns determine the maxi-
mum achievable bandwidth utilization and latency by repeatedly
executing the same operation, i.e., a simple read or write. Com-
plex patterns allow users to evaluate speci�c designs via chained
read/write access from/to DRAM and PMem with varying persist
instructions and access sizes. Based on these complex patterns,
users can model, e.g., new index structure designs and gain insight
into their memory performance before implementing them.

We present the runtime of PerMA-Bench in Section 3.1. Then,
we present options for workload customization in Section 3.2 and
brie�y discuss supported memory store semantics in Section 3.3.

3.1 Runtime
PerMA-Bench is designed as a standalone benchmark executable.
Users interact with PerMA-Bench via con�guration �les and com-
mand line arguments. Based on these speci�ed con�guration param-
eters, individual benchmarks are created. We show the execution

Figure 3: Execution cycle of a benchmark in PerMA-Bench.

cycle of PerMA-Bench in Figure 3. For each benchmark (BM) that
is created, PerMA-Bench performs four steps.

First, all data �les are prepared and �lled with random data. The
�les can be located in PMem or DRAM to allow for hybrid setups,
which are common in current PMem research. Next, individual work
packages are generated, which contain a pointer for each operation
that is to be executed on the data. Work packages of, e.g., a random
read benchmarkwith 100 operations contain 100 pointers to random
o�sets in the data �le. For sequential access, packages contain 100
pointers to contiguous addresses. This allows for execution in a
tight loop instead of requiring logic per benchmark type. For raw
performance benchmarks, all work packages are pre-generated to
avoid the overhead of generation during execution.

During the execution, # threads are spawned (# = 4 in Figure 3).
Each thread then continuously pulls a new work package from a
shared queue and executes the requested operations on that work
package. PerMA-Bench adopts this work package approach for two
reasons. First, to avoid stragglers when statically assigning work to
threads. During our evaluation, we observed that hyperthreading
often leads to very unbalanced execution times, skewing the �nal
results. Second, as the general concept of work-stealing is employed
in many databases exactly to avoid execution skew, PerMA-Bench
represents a common execution model where workers operate on
small work packages, e.g., via morsels [33]. To avoid long-running
packages and the skew this entails, work packages contain 64 MB
worth of operations by default, which execute in less than 100 ms
in most cases. All threads are synchronized via a barrier before the
execution starts to ensure concurrent execution.

We �nd that results are not impacted by a warm-up phase within
workloads, as they exceed cache and queue sizes. However, as pre-
faulting pages before writing to them avoids kernel page zeroing
during execution [21], we provide a “warm-up” pre-fault �ag.

After all work packages have been processed, PerMA-Bench
collects the results of all threads to calculate the �nal benchmark
results. PerMA-Bench determines the total execution time as the
time between all threads’ earliest begin timestamp and latest end
timestamp. This captures the entire execution duration but may
underestimate the actual performance slightly, as some threads are
already idle while others are �nalizing their work. However, in
PerMA-Bench, we perform workload-driven performance evalua-
tion and from a higher-level perspective, this approach captures the
total time it takes to complete a given workload. Based on the total
number of processed bytes or operations and the total execution
time, PerMA-Bench calculates the overall throughput in GB/s or
operations/s. If speci�ed by the user, PerMA-Bench also samples
the latency of individual operations. The sampled values are added



Listing 1: Example con�g YAML �le.

1 hash_index_update:
2 matrix:
3 number_threads: [ 1, 4, 16 ]
4 args:
5 custom_operations:
6 �r_256 ,w_64_cache_128 ,w_64_cache_ -128�
7 total_memory_range: 10G
8 number_operations: 100000000

to a histogram and presented in the form of minimum, maximum,
average, and multiple percentile latencies.

3.2 CustomWorkloads and Con�guration
Besides the pre-de�ned workloads, custom benchmarks can be con-
�gured via YAML �les and command line arguments. In this section,
we present con�guration options provided by PerMA-Bench with
which users can express their speci�c workloads’ access patterns.

Con�guration Files. Benchmarks in PerMA-Bench are con�g-
ured via YAML �les. This format allows users to specify workloads
manually and programmatically. We show an example con�gura-
tion in Listing 1. Each con�guration �le consists of two main parts,
the matrix arguments and the general arguments. The matrix block
(Lines 2-3) describes which dimensions should be evaluated in the
benchmark. Each matrix argument is provided as a list, from which
PerMA-Bench creates a benchmark for each combination in the
cross product, i.e., three benchmarks in this example. The args
block (Lines 4-8) describes which general arguments should be
used for every combination. In this example, we con�gure a hash
index update workload and evaluate it for 1, 4, and 16 threads.

Custom Operations. In Line 6, we show the de�nition of a
custom operation. These model complex, pointer-chasing memory
access patterns instead of simple, independent reads or writes. They
are created in a chain in which each operation >? is responsible for
calling the next operation >? 0 once complete. When >? has read the
random data 3 , it passes 3 to >? 0, which then determines the next
address based on 3 . By requiring data from >? in >? 0, PerMA-Bench
ensures that >? 0 is not executed before >? was completed.

In the example, PerMA-Bench reads 256 Byte (r_256), e.g., a
hash bucket, at a random location A0 within the allocated data
range. Then, two 64 Byte Cache write instructions (w_64_cache)
are executed. The �rst is performed with an o�set of 128 Byte
(_128 = A0 + 128), e.g., to store data in a hash bucket. The next
write operation jumps back 128 Byte to the start of the bucket
(_-128 = A0) to update metadata. This pattern of storing data in a
node and updating metadata afterwards is common in PMem data
structures [5, 36, 39, 46]. As 64 Byte cache line �ushes are combined
to 256 Byte in Optane, it is important to model adjacent writes
correctly instead of simulating them with writes to the same cache
line while supporting di�erent persist instructions. Varying these
sizes also gives users insight into the impact of prefetching in PMem.
Additionally, PerMA-Bench supports mixing DRAM and PMem for
hybrid access, as used, e.g., in PMem B-Trees [7, 36, 46, 57].

Benchmark Parameters. PerMA-Bench currently o�ers 19
con�guration parameters that allow users to de�ne a wide range
of individual benchmarks without having to write C++ code for
each of them. Users can specify, e.g., PMem/DRAMmemory ranges,

access size, sequential/random execution, number of partitions and
threads (for data parallelism), custom operations, work package
size, runtime, and �le pre-faulting.

Other Features. PerMA-Bench supports running di�erentwork-
loads as task-parallel benchmarks. Concurrent workloads might
impact each other as one bene�ts from caching, while the other �lls
the cache with unwanted data. Users can also specify NUMA-aware
execution of benchmarks on far or near CPUs to explore how data
placement impacts their workloads and whether NUMA must be
considered in their design. PerMA-Bench additionally allows users
to run all benchmarks in DRAM as a performance reference.

3.3 Persist Instructions
PerMA-Bench supports four persist instructions, Cache, CacheInval-
idate, NoCache, and None. Cache represents a temporal store (clwb),
CacheInvalidate represents a temporal store that invalidates the
cache line (clflushopt), NoCache represents a non-temporal store
(ntstore), and None performs no explicit �ush instruction. Tempo-
ral refers to the inclusion of data in the cache hierarchy with the
assumption of future access, i.e., temporal locality is likely. When
temporal locality is unlikely, non-temporal instructions can bypass
the cache completely, avoiding cache pollution. Not explicitly �ush-
ing is useful when persistence is not required, e.g., when storing
intermediate results in PMem or when eADR ensures persistence.
For Cache, CacheInvalidate, and NoCache, we add a store fence
(sfence) afterwards to guarantee correct write ordering. PerMA-
Bench uses Intel’s AVX512 extension to write an entire cache line,
i.e., 64 Byte or 512 Bits, in one instruction using SIMD-registers [23].

4 PERMA-BENCH RESULTS
In this section, we present the results of various PerMA-Bench
workloads onmultiple PMem server con�gurations. Our results give
insight into both raw and workload-speci�c PMem performance to
better understand PMem’s use in database workloads. We evaluate
various con�gurations to show how comparable previous results are
across PMem setups, as they are often run on only one con�guration,
e.g., on one DIMM size or with a partially stocked server. These
con�gurations allow us to draw more general conclusions about
PMem as well as provide insight into how previously published
systems and results apply to other setups.

We describe our evaluation servers in Section 4.1. We then show
the bandwidth and latency results of PerMA-Bench’s raw perfor-
mance workloads in Section 4.2 and Section 4.3 to gain an under-
standing of the maximum performance of current PMem hardware.
In Section 4.4, we discuss the results of database-related workloads
and index structures to gain insight into the performance of PMem
for more complex access patterns in actual systems and implementa-
tions. Finally, we investigate the impact of con�gurations a�ecting
a single server in Section 4.5, i.e., by varying the number of DIMMs
or the memory bus speed, as well as by disabling the prefetcher.

4.1 Setup And Methodology
We perform our evaluation on the four server con�gurations pre-
sented in Table 1. We refer to the servers as named in the table or
via their label, e.g., Apache-128 or A-128. Apache Pass is the code
name for the �rst generation/100 Series Optane DIMMs. Barlow



Table 1: Evaluated servers (single socket). Apache/Barlow refer to the code names of 100/200 Series Optane.
Name (Plot Label) CPU PMem DRAM OS

Apache-128
(A-128)

Intel Xeon Cascade Lake
18 Cores @ 2.7 GHz

6x 128 GB Intel Optane 100 Series
@ 2666 MT/s | 15 Watt 6x 16 GB DDR4 Ubuntu 20.04

(5.4 kernel)
Apache-256

(A-256)
Intel Xeon Cascade Lake
18 Cores @ 2.6 GHz

6x 256 GB Intel Optane 100 Series
@ 2666 MT/s | 18 Watt 6x 16 GB DDR4 Ubuntu 20.04

(5.4 kernel)
Apache-512

(A-512)
Intel Xeon Cascade Lake
24 Cores @ 2.4 GHz

6x 512 GB Intel Optane 100 Series
@ 2666 MT/s | 15 Watt 6x 64 GB DDR4 Ubuntu 20.04

(5.4 kernel)
Barlow-256
(B-256/B-D)

Intel Xeon Ice Lake
32 Cores @ 2.2 GHz

8x 256 GB Intel Optane 200 Series
@ 3200 MT/s | 15 Watt 8x 32 GB DDR4 Ubuntu 20.04

(5.4 kernel)

Pass is the code name for the second generation/200 Series Op-
tane DIMMs. All servers are equipped with Optane DC Persistent
Memory DIMMs. All Optane DIMMs are con�gured interleaved,
i.e., striped in 4 KB blocks and accessed in App Direct mode. All
measurements are performed on a single socket. To avoid measur-
ing zeroing of requested pages by the kernel, �les are pre-allocated
and pre-faulted by default before running the benchmark, as recom-
mended [21]. Unless stated otherwise, we generate a �xed amount
of random data for each benchmark, depending on the benchmark
con�guration. In all experiments, we use 1 GB = 230 Byte.

The A-256 server is con�gured with an 18 Watt average power
budget per DIMM, the other 100 Series servers are con�gured to 15
W. While Optane allows the power budget to be set from 12 to 15
W (A-128, B-256) or 18 W (A-256/512), it is set by the vendor on the
evaluated servers and cannot be recon�gured. Analyzing the power
range allows us to show that even within the same generation,
server con�guration has a large performance impact.

When drawing performance conclusions, we also consider o�-
cial performance numbers provided by Intel [19, 20] and previously
reported numbers in research [10, 13, 24, 52, 56]. To provide a ref-
erence to well-known performance numbers, we also evaluate all
experiments in DRAM. We show the results of the DRAM runs on
Barlow-256 (shown as B-D in the plots). The DRAM performance
in the Apache servers is lower, so we omit them for space reasons.
Due to space limitations, we present only selected results in this
paper. The full results can be found in our repository.

4.2 Raw Performance Workloads – Bandwidth
In this section, we present the bandwidth results of PerMA-Bench’s
raw performance workloads. We investigate the bandwidth utiliza-
tion of all servers for sequential and random reads and writes. As
the �rst part of our evaluation, these workloads provide insight
into which performance can be achieved with current PMem hard-
ware. Based on this knowledge, users can make decisions about the
feasibility of PMem-speci�c implementations and their expected
performance range in bandwidth-heavy applications.

4.2.1 Sequential Reads. We �rst discuss the throughput of sequen-
tial reads across all servers, as they are a core database access
pattern. In this benchmark, we perform a sequential read workload
on 50 GiB of randomly generated data with 4096 Byte access size
and a varying number of threads. We show our results in Figure 4a.
Within the �rst generation, we observe a di�erence of up to 44%,
ranging from 29 to 42 GB/s. According to the o�cial product sheet,
A-128 and A-256 have the same read bandwidth under equal power
budgets [19]. So the 24% di�erence between A-512 and A-128 is
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Figure 4: Sequential and random read bandwidth.
a) Fixed to 4096 Byte Access | b) Fixed to 16 Threads

based on the DIMMs, while the additional 15% improvement from
A-128 to A-256 is based on the higher power budget.

B-256 achieves ~40% higher bandwidth than its �rst-generation
counterpart A-256 with 58 GB/s and a 60% improvement over A-128.
Barlow-256 is stocked with 8 DIMMs per socket instead of 6 DIMMs
as in the 100 Series, leading to a 33% higher expected performance.
Beyond this, we observe only a small improvement compared to
the 18 W budget in A-256. But compared to A-128, which has the
same read bandwidth as A-256 under equal power budgets [19], we
see an additional 30% improvement. So for common 15 W setups,
there is a notable performance increase between generations.

Our results show higher variance in throughput once hyper-
threading is used and PMem limits are reached. This is observable
for A-128 and A-256 with 32 threads, as both have only 18 physical
cores. Apache-512 is more consistent, as it has 24 cores and B-256
even improves until 32 threads, which is the number of its physical
cores. To achieve stable performance across servers, it is important
to not exceed the number of physical cores when scanning data.

As a reference, B-DRAM’s bandwidth reaches 98/145/157 GB/s
for 8/16/32 threads, which is still signi�cantly higher than PMem’s.
In the second generation of Optane DIMMs, the gap between PMem
and DRAM even increases, from 2.3 to 2.7⇥. So while the bandwidth
improved, there is still a clear advantage for DRAM in bandwidth-
heavy applications. On the other hand, future systems must be able
to process ~60 GB/s of data when reading from PMem, which is a
major challenge when considering the cost of, e.g., random access
data structures used in aggregations or joins. Thus, for most data-
intensive applications, the bandwidth of sequentially accessing data
stored in PMem is su�cient and does not constitute a bottleneck,
unlike alternative secondary storage [10].

4.2.2 Random Reads. As indexes are core database components
and essential to query performance, we investigate an index-inspired
workload consisting of small, random, read-only operations, as
commonly performed in hash or tree indexes. The bandwidth for
uniform 64 and 256 Byte access across 10 GiB of random data is
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Figure 5: Thread and access size impact on sequential writes.
a) Fixed to 512 Byte Access | b) Fixed to 16 Threads

shown in Figure 4b. These access sizes represent the internal access
granularity of Optane as well as standard cache-line-sized reads.

When considering PMem as random access memory as seen by
the CPU, we see that it cannot achieve the same random to sequen-
tial ratio as DRAM. For 64 Byte, B-DRAM achieves 60% of the peak
sequential performance, while the PMem servers achieve only 25%.
Using the access granularity of Optane at 256 Byte, PMem achieves
67 – 92% and B-DRAM achieves 81%. Con�gurations with lower se-
quential performance achieve higher percentages in random access,
reducing the gap from 40 to 20%. The second generation improves
by 40% over A-256 and 80% over A-128. Similar to sequential access,
we see little improvement over the higher-powered DIMMs but
large gains compared to the lower wattage DIMMs.

When designing for PMem, it is important to keep the read am-
pli�cation of small reads and the access granularity in mind, as 256
Byte access achieves more than two-thirds of the peak sequential
performance. Compared to volatile DRAM, the performance is still
signi�cantly lower. But for applications that need fast access to
small persistent records, e.g., point lookups in a key-value store
or persistent index operations, 17+ GB/s of random 64 Byte access
and 32+ GB/s of random 256 Byte access allow future systems to
re-think the cost of persistence, especially when considering other
bottlenecks such as network or alternative secondary storage.

4.2.3 SequentialWrites. Inspired by loggingworkloads in databases,
we show a sequential write benchmark of 30 GiB in Figure 5. We
investigate varying the number of threads and write size. We use
NoCache writes, as logged data does not require temporal locality.

In Figure 5a, we evaluate the bandwidth for 512 Byte sequential
writes. Within the 100 Series, we observe a large di�erence between
A-128/512 and A-256. A-128/512 achieve around 12 GB/s sequential
write bandwidth, as shown in previous work [10, 52, 56]. A-256, on
the other hand, achieves close to 17 GB/s, due to the higher power
budget. This is 40% higher than previously published results for
100 Series Optane. We verify this bandwidth utilization in VTune
to con�rm that there is a signi�cant di�erence even within the �rst
generation DIMMs. Thus, it is highly bene�cial to con�gure PMem
with a higher power budget of 18 W for write-heavy applications.

We observe a large improvement from the regular-powered 100
to the 200 Series. At its peak, B-256 achieves 21.6 GB/s, which is 75%
higher than A-128/512 and goes beyond the expected 33% increase
due to more DIMMs. The improvement for sequential writes is also
higher than that of sequential reads. However, compared to the
high-powered A-256, we observe only a 30% improvement, i.e., none
beyond the extra DIMMs. Nonetheless, for common con�gurations
used in previous research, there is a large increase that encourages
utilizing PMem even more for sequential writes, e.g., when logging
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Figure 6: Impact of persist instruction on write bandwidth.
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or using log-based storage systems. When persistence is not needed,
PMem performs signi�cantly worse than DRAM, which achieves
more than 40/80 GiB/s for 16/32 threads, i.e., a di�erence of 4⇥.

When scaling the access size for 16 threads, as shown in Figure 5b,
we observe that all servers require at least 256 Byte to achieve peak
bandwidth. However, for A-256 and B-256, this is more important
than for A-128/512. The latter two servers perform close to their
maximum with 128 Byte, while the other two servers improve by
at least 70% from 128 to 256 Byte. B-256 even improves from 256
Byte to 512 Byte, before dropping again slightly for larger sizes.

We also observe that all con�gurations decrease slightly when
increasing the number of threads beyond a certain point. This point
is at 16 threads for A-256 and B-256, while it is at 8 for A-128 and
A-512. The ideal con�guration of threads and access size depends
on the server and di�ers across generations. While all 100 Series
servers in our evaluation peak at 512 Byte access, B-256 peaks with
256 Byte access and 32 threads. These slight performance di�erences
across all servers indicate that �ne-tuning for the individual server
yields higher performance and cannot be easily generalized.

4.2.4 Persist Instruction. We evaluate the impact of di�erent persist
instructions on the bandwidth for sequentially writing 30 GiB and
randomly writing 10 GiB. The results are shown in Figure 6.

With Ice Lake CPUs, Intel o�ers persistence for all data in the
eADR (cf. Section 2.2), making explicit �ushing optional. However,
we see that for sequential write access, not �ushing data strongly
decreases bandwidth utilization by up to 4⇥ compared to explicit
stores. Randomly evicted cache lines impair write-combiningwithin
the DIMMs, resulting in random-access-like write performance.
Thus, explicitly �ushing is bene�cial for sequential writes, even
with the second generation server and eADR. For B-DRAM, on the
other hand, there is no di�erence between both options, as there is
no write ampli�cation when randomly evicting data from cache.

For random 64 Byte writes, we evaluate all four persist options,
i.e., NoCache, Cache, CacheInvalidate, and None, as shown in Fig-
ure 6b. Explicitly bypassing the cache via non-temporal stores
achieves the highest bandwidth in all servers. Non-temporal stores
also surpass explicit �ushing in DRAM, which shows that there is
a ~25% overhead of passing stores through the cache hierarchy.

Issuing no �ush (None) is only marginally better than explicit
temporal stores for Apache servers, but nearly 2⇥ better for B-256.
Thus, in eADR servers, users bene�t from reduced code complexity
and higher bandwidth when not explicitly �ushing. Based on the
di�erent performance characteristics of �ushes in the 100 and 200
Series, future work should re-evaluate �ushes in existing PMem-
optimized index structures. Signi�cant work has been done to re-
duce the number of �ushes and to decide which instructions to
use [36, 39, 46, 57, 59], but it is unclear whether the choices apply
to future Optane or are tailored only towards 100 Series.
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Figure 7: 256 Byte random read + write latency. 16 Threads.

4.3 Raw Performance Workloads - Latency
In this section, we evaluate the latency of raw PMem access across
all servers. Understanding latency allows users to evaluate the
feasibility of PMem-speci�c implementations in latency-critical
applications and gain insight into the expected performance.

4.3.1 Operation Latency. In Figure 7, we show the average latency
of �ve operations in PMem: a 256 Byte read and a 256 Byte read
followed by a 256 Byte write to the same locationwith the supported
persist instruction (NoCache, Cache, CacheInvalidate, None). We
perform 100 million operations on 10 GiB of data and sample every
5000th operation. The results show that read latency is consistent
across servers. While their read bandwidth di�ers signi�cantly,
there is no di�erence in latency. However, the latency is still 3⇥
higher than in B-DRAM, which is also approximately the factor
between both for random read bandwidth.

When following the read with a write operation, latency is not
equal on all servers. We observe that A-256 and B-256 have lower
latency than the other servers across all �ush operations. While
read latency is bound by the latency of physical media access, write
latency is more nuanced, as writes do not need to be �ushed to
the medium to be considered complete. Flushing to a full write
pending queue blocks the caller and has higher latency. Due to the
servers’ higher bandwidth, more writes are �ushed, freeing up space
in the queue. The latency across all explicit persist instructions is
consistent within each server, with NoCache having a slightly lower
latency. Not �ushing when writing 256 Byte of data has the highest
latency (and lowest bandwidth), as randomly evicted cache lines
cause high write ampli�cation, blocking the write pending queues.

When running the same experiment with 64 Byte access, the
latency is nearly identical for all instructions except None. For
None, omitting the �ush for consecutivememory addresses prevents
e�cient write combining. But for 64 Byte writes, write combining
cannot be performed, so there is no disadvantage. For latency-
critical applications, the choice of persist instruction is not relevant
from a performance perspective. However, when writing more than
64 consecutive Bytes, an explicit �ush should be used to bene�t
from write combining, even in eADR servers such as B-256.

While we observe a bandwidth increase across generations, la-
tency has not improved. Additionally, we notice a correlation be-
tween higher available bandwidth and reduced write latency. How-
ever, most research focuses on bandwidth as a limiting factor of
PMem compared to PMem. Our results raise the question of whether
future designs should shift their focus towards avoiding latency
instead. Especially in latency-bound applications, new approaches
may sacri�ce bandwidth to reduce latency, e.g., by writing addi-
tional data, which in turn reduces additional random lookups.

4.3.2 Double Flush Latency. Current PMem systems often store
metadata for tree nodes, hash buckets, or storage pages in a single
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Figure 8: Double-�ush latency. 64 Byte read + 2⇥ 64 Byte write.

cache line and repeatedly update, e.g., counters, bitsets, or locks in
that cache line [5, 39, 46]. While this practice is often used, some
authors discourage it due to high latency [29, 51]. In this section, we
evaluate the impact of di�erent persist instructions when �ushing
the same cache line twice (double-�ush). We perform 100 million
operations on a 10 GiB range and sample every 5000th operation.

In Figure 8, we see that the double-�ush latency for A-128 and
A-512 is 2⇥ of the single �ush latency shown in Figure 7. In compar-
ison, the double-�ush latency of A-256 and B-256 is only marginally
higher than the single �ush. Under high load, these servers achieve
higher bandwidth, which results in less pressure on the write queue
and, in turn, reduces the latency of individual writes.

By comparing Cache and CacheInvalidate, we see that in the
second generation Optane DIMMs there is actually a di�erence
between the used persist instruction. The 2nd generation Xeon
CPUs in the Apache servers do not fully implement clwb, inter-
nally mapping it to clflushopt instructions instead. As B-256’s
CPU supports true clwb, we observe that invalidating �ushes (via
clflushopt) have a higher latency due to the required memory
read between the writes. While the latency of B-256 is slightly
higher than that of A-256 for None and CacheInvalidate, it is lower
for Cache and NoCache stores. Thus, we conclude that using non-
invalidating �ush operations on the same cache line is preferable for
200 Series Optane, as it does not include the penalty of invalidating
the cache line, which occurred in the 100 Series.

4.4 Database-Related Workloads
In this section, we present the results of database-related workloads
modeled in PerMA-Bench. The memory access patterns in these
workloads are based on actual implementations of PMem index
structures. Expressing complex memory access patterns in PerMA-
Bench allows users to gain insight into their design choices at a
memory-performance level before having to implement numerous
options. This also helps to understand where performance is lost
and where operations are close to the raw memory performance.
Our results show that both existing systems that were designed
for a speci�c server con�guration and systems that were designed
pre-Optane do not fully utilize the performance improvements of
second-generation Optane.

First, we discuss the performance of PMem-aware index-inspired
workloads compared to a DRAM-only version in Section 4.4.1. Then,
we evaluate the performance of actual PMem-aware implementa-
tions based on our �ndings in PerMA-Bench. We show that current
designs often cannot fully utilize the performance improvements of
200 Series Optane and avoiding explicit �ushes in eADR does not
always yield the best results. To provide more general solutions,
future work on PMem-aware systems must expand beyond designs
evaluated on a single setup and reconsider design choices that may
have been altered by newer characteristics of 200 Series Optane.
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Figure 9: Factor X lower throughput than DRAM of updates
(Up.) and lookups (Lk.) in PMem indexworkloads. 32 Threads.

4.4.1 Database Index Operations. In this section, we cover a wide
range of database-related index workloads in PerMA-Bench, run
with 32 threads. When designing PMem systems, a DRAM-based
version is often used as a comparison to show the e�ciency of
the chosen design. To cover this, we model our access based on
PMem but run the experiments in both PMem and DRAM. We use
the throughput of all access in DRAM as a baseline and show the
factor X by which the throughput of the same access in PMem is
lower. From our evaluation in the previous section, we know that
DRAM’s random read bandwidth is 5 – 10⇥ higher than PMem’s
for 64 Byte access and 3 – 4.5⇥ for 256 Byte access (cf. Section 4.2.2).
DRAM’s random write bandwidth is up to 2 – 6⇥ higher for 64
Byte with explicit �ushes, and 3 – 6⇥ higher for 256 Byte writes.
Un�ushed writes have an up to 30⇥ higher bandwidth. This shows
the strong imbalance between DRAM and PMem for random access
data structures, especially if only tiny amounts of data are changed,
e.g., an 8 Byte pointer in an index. Understanding these di�erences
is important to optimize access to each memory type accordingly.
We perform 100 million operations across 10 GiB in all workloads.

We model the access patterns for a hash index like Dash [39].
For lookups, its access consists of a 512 Byte read, representing two
adjacent 256 Byte buckets, followed by two 64 Byte cache �ushes
for updates. In Figures 9a and b, we see how the improved random
access performance of B-256 closes the gap to DRAM. As the access
pattern of a hash index is O(1) by design, the improvement should
apply directly to real workloads. However, PMem still performs
signi�cantly worse than DRAM, as small updates to the index have
a high write ampli�cation, e.g., 16⇥ for 16 Byte updates.

We model a PMem-only tree index after FAST+FAIR [18]. Based
on the authors’ implementation, we issue 3⇥ 512 Byte random reads
for a lookup and 4⇥ 64 Byte cache �ushes for an insert, as 50% of a
node has to be moved on average when inserting a value into a leaf
in FAST+FAIR. We see an average performance of around 4⇥ in the
100 Series and 3⇥ in the 200 Series. As this design operates on 512
Byte nodes, we observe the expected ~4⇥ higher DRAM bandwidth
for lookups. Updates perform slightly worse, but better than the
raw DRAM bandwidth would suggest. However, four �ushes per
update (on average) are expensive, even in DRAM, as each one
entails an sfence that clears all write bu�ers.

We represent a hybrid DRAM-PMem tree through FPTree [46].
PerMA-Bench issues 2⇥ 2048 Byte DRAM reads and 1⇥ 1024 Byte
PMem read for lookups, followed by 3⇥ 64 cache �ushes for updates,
based on the node sizes in the implementation that we use [15]. We
see that the hybrid tree is closer to DRAM in relative performance,
as most of the random lookups occur in DRAM. Thus, we see an
overhead of 1.7⇥ for placing the leaves in PMem on B-256. The
Apache servers have a higher overhead, as their random read PMem
bandwidth is lower and their DRAM is generally slower.
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Figure 10: Hash index in PerMA and Dash. 16 threads. PerMA:
512 Byte lookup + 2⇥ 64 Byte Cache update. Dash: 8/8 Byte key/value.

Overall, we see that random access patterns in PMem index
structures perform signi�cantly worse than in DRAM. Especially
with small random writes, performance drops compared to PMem.
We also note that these patterns are not optimized for DRAM,
meaning that without the explicit �ushes, even higher performance
is observed. In the case of the hash index, we observe a 30% increase
in DRAM when omitting the �ush. But while PMem-based indexes
cannot achieve the raw performance of DRAM, they o�er (full)
persistence and recovery with an average performance drop of only
4⇥. In addition, the price per GB of PMem is 4 – 6⇥ lower than
DRAM, striking a balance in price-performance.

4.4.2 Hash Index. In this section, we compare the PMem-aware
hash index Dash [39] and the corresponding operations’ memory
access pattern in PerMA-Bench.We pre�ll Dash with 100 million en-
tries before performing 100 million operations using the benchmark
tool provided by the authors. The results are shown in Figure 10.

PerMA-Bench provides a good upper bound estimate of perfor-
mance based on memory access alone. For all Apache servers, the
relative performance in raw access transfers directly to the relative
performance of Dash. The insert performance is more complex in
Dash, as it includes regular inserts, displacement, over�ow buck-
ets, and resizing. As these depend heavily on the implementation,
it is not possible to model all in one custom operation. For our
comparison, we assume an idealized insert without resizing and
displacement and, thus, overestimate the insert performance. Devel-
opers canmodel all operations individually and run the benchmarks
separately. This provides a good overview of the individual opera-
tions’ performance and the results can be combined to determine
the overall performance depending on the con�guration parame-
ters of the desired implementation. If a displacement takes - `B ,
depending on the ratio of inserts to displacements, e.g., 3:1, we can
add -/3 `B to each insert to combine both operations.

PerMA-Bench also provides insight into potential areas of im-
provement. Dash achieves close-to-raw performance for lookups,
which indicates that there is not much room for optimization in
designs that access at most two buckets to retrieve an entry.

Finally, we observe that Dash underperforms on B-256. Unlike
the 100 Series servers, Dash’s relative raw lookup performance in
PerMA-Bench is 40% higher than the actually achieved throughput.
When investigating the performance in more detail, we see that
Dash spends nearly 20% of all cycles on machine clears caused by
memory ordering violations, which do not occur on the Apache
servers. While we use Dash in this experiment, this problem is
not Dash-speci�c but a general issue in current systems designed
for PMem. Due to the high price, researchers often have access
to only one server, resulting in current research focusing on a
single con�guration during development. Our results show that
its performance is not yet understood well enough to generalize
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Figure 11: Tree index in PerMA and FAST+FAIR. 16 threads.

from one server to all, especially across generations. Now that the
second generation Optane DIMMs are available, it is bene�cial to
consider more than one server to develop more general PMem-
aware solutions in the future. In the following section, we show
that performance limitations occur also in other index structures.

4.4.3 Tree Index. In Figure 11, we show the FAST+FAIR BTree im-
plementation [18] and its modeled memory access in PerMA-Bench.
FAST+FAIR is a popular PMem-only BTree implementation that
was designed pre-Optane. We pre�ll 100 million records before
performing 100 million operations using the benchmark tool pro-
vided by the authors. The ideal-insert assumption as in Dash also
applies to this benchmark. Across all operations, we see that the
raw performance of B-256 is signi�cantly higher than that of the
100 Series servers. However, this does not translate to FAST+FAIR,
as its performance improves only marginally across generations.

As it was designed pre-Optane, it does not include various opti-
mizations made in later designs. When taking a closer look at the
execution, we see that 30% of all cycles are consumed by bad specu-
lations, front-end stalls, and computation. These 30% are re�ected in
the performance di�erence between PerMA-Bench and FAST+FAIR.
Compared to more recent work, FAST+FAIR also makes use of
heavy-weight locking instead of atomics or hardware transactional
memory. This overhead prevents FAST+FAIR from scaling with the
higher performance of the newer Optane DIMMs.

These results indicate that general implementations without ex-
plicit knowledge of the underlying PMem technology do not scale
well with better hardware. The memory access in FAST+FAIR is not
optimized towards Optane, e.g., by requiring many �ushes for up-
dates due to sorted nodes. In another experiment, we observe better
scaling results for the pre-Optane FPTree [46], as we used a version
that was re-implemented more recently on Optane [15]. Adding to
our insights on the Optane-tuned hash index Dash in Section 4.4.2,
we conclude that it is also not viable to rely only on general PMem
assumptions, as done in pre-Optane designs. It is bene�cial to tune
PMem-aware systems across a range of current hardware to capture
the intricacies of Optane without optimizing solely for one server
con�guration. Especially with increasing PMem performance as
in B-256, bottlenecks may shift from PMem access to, e.g., CPU or
DRAM, requiring a balance between them.

4.4.4 Impact of eADR. In 200 Series Optane, eADR guarantees
the persistence of data that resides in the cache, thus, making ex-
plicit �ushes unnecessary. In this section, we evaluate the impact
of omitting explicit �ushes and issuing only sfence instructions1
on various PMem-aware key-value storage designs. In this evalua-
tion, we also include LB+Tree [36], a hybrid DRAM-PMem B+Tree
optimized highly and explicitly for Optane, and Viper [5], a hybrid

1sfence is still required to ensure correct ordering.
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DRAM-PMem log+index key-value store that is designed for op-
erations on larger items than 8 Byte index entries. This gives us a
broader overview of PMem storage designs. We show the results
of 32 and 64 thread runs on B-256 for FPTree, LB+Tree, Dash, and
Viper in Figure 12. For the three index structures, we use 8/8 Byte
key/values. For Viper, we use 16/200 Byte key/values. We evaluate
FPTree with pibench [34]. For LB+Tree, Dash, and Viper we use
the respective benchmark tools provided by the authors.

Our results show that for the tree-based designs, removing ex-
plicit �ushing improves performance. However, for Dash, we ob-
serve no improvement and even a slight decrease for 64 threads.
When storing larger records in Viper, we observe that not explic-
itly persisting reduces performance by 10%. Viper is designed to
leverage sequential PMem writes, which are lost through random
cache line eviction when omitting �ushes (cf. Section 4.2.4).

Our results show that eADR is not a silver bullet for future
PMem-system design. Developers must still understand their access
patterns and evaluate whether they bene�t from explicit �ushes or
not. Based on this, we encourage future work that explicitly com-
pares low-level �ush performance in PMem index/storage designs
to provide an overview of bene�ts and downsides in this space.

4.5 Single Server Performance
In this section, we investigate con�gurations and settings that
impact a single server. First, we show the impact of Intel’s hardware
prefetchers on memory bandwidth and discuss the implications this
has for general PMem-aware system design (Section 4.5.1.) Next, to
provide insight into the performance of partially stocked servers
with older or lower-end components, we evaluate the performance
of a single server with varying con�gurations. This is important, as
buying PMem in large quantities is currently still very expensive,
which is why users may not always choose fully stocked servers
(one DIMM per available slot) with the highest con�guration and
latest components. To this end, we investigate the impact of the
memory bus speed on PMem bandwidth (Section 4.5.2), followed
by the impact of the number of DIMMs (Section 4.5.3).

4.5.1 Prefetcher. Throughout our evaluation, we observe work-
loads for which PerMA-Bench achieves lower performance than
expected due to Intel’s hardware prefetching behavior. This obser-
vation has been made in previous work [10] and we investigate
it further in Figure 13. We actively disable all hardware prefetch-
ers and measure the bandwidth utilization of 200 million random
reads across 10 GiB with varying sizes. In the top row, we see
that Apache-256 performs worse when the prefetcher is active for
1024 Byte reads with both 16 (a) and 32 threads (b). On the other
hand, Barlow-256 performs worse for 512 and 1024 Byte but only
with 16 threads (c). With 32 threads, the prefetcher impacts the
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Figure 13: Impact of prefetcher on random read bandwidth.

performance only marginally (d). For the impacted runs, we ob-
serve higher bandwidth utilization in VTune, which indicates that
the prefetcher is mistakenly fetching unnecessary data and thus
reducing the e�ective bandwidth.

To transfer these insights to a real system, we run a micro-
benchmark on Barlow-256 with the key-value store Viper. In this,
we observe that disabling the prefetcher for 200 Byte values results
in a 40% performance increase for get requests with 32 threads.
But for 64 threads, a disabled prefetcher reduces performance by
30%. So while it is not generally advisable to disable the hardware
prefetchers, its impact should be taken into account when design-
ing, pro�ling, and optimizing systems that operate on larger data
chunks, e.g., bu�er managers or storage engines.

4.5.2 Memory Bus Speed. Optane modules share the memory bus
with regular DRAM DIMMs, so they must run at the same memory
bus speed. While DRAM often supports higher speeds than Optane,
this is not always the case, e.g., when using older DRAM modules,
requiring users to reduce the speed of their PMem. To investigate
which impact this has on PMem performance, we con�gure the
memory bus in Apache-256 and Barlow-256 to di�erent speeds. In
Figure 14, we show the performance of sequential reads and writes,
random reads, as well as read latency, and custom hash and tree
index operation throughput. We use the same con�gurations as in
the previous benchmarks. Apache-256’s DRAM supports up to 2933
MT/s but is limited by PMem at 2666 MT/s, which we choose as the
baseline. We also con�gure the bus speed to 2400 and 2133 MT/s to
arti�cially slow down the server. Barlow-256’s DRAM and PMem
both support 3200 MT/s and we compare this to 2933 MT/s2.

Our results show that PMem read bandwidth is impacted only
marginally by reduced memory speed and not at all for write band-
width. With a bus speed of 2666 MT/s, the theoretical bandwidth
limit is ~20 GiB/s (= 2666⇥106⇥8 Byte). In a server with six DIMMs,
this allows for a theoretical maximum of ~120 GiB/s. Reducing the
bus speed to 2133 MT/s results in a limit of ~16 GiB/s per DIMM and
~96 GiB/s across all DIMMs, i.e., a drop of 20%. However, PMem can-
not supply data at this rate and stays signi�cantly below the limit.
The marginal di�erence in performance across the con�gurations
is a result of slightly increased access latency due to fewer trans-
fers per second. For DRAM, on the other hand, we observe a 20%
bandwidth drop as it can provide data at the maximum frequency.
Overall, we observe little to no performance drop and conclude that
the selected memory bus speed is negligible for current Optane
PMem. This also holds for 200 Series Optane, where it may be more
common to have DRAM that limits the bus speed, as 3200 MT/s is
also the current speed supported by DRAM.
2The server’s BIOS does not allow con�gurations below 2933 MT/s.
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Figure 14: Performance-impact of varying memory bus
speeds (in MT/s) on Apache-256 and Barlow-256. 32 threads.

4.5.3 Number of DIMMs. To provide insight into the performance
of servers with only partially �lled PMem slots, we evaluate PMem
with a varying number of DIMMs. This allows us to both draw con-
clusions about how to stock a PMem server and also to make results
of recent studies [30, 36, 54], which ran experiments on partially
stocked servers, comparable to a full server. All experiments are
run on a single socket of Apache-256 with 16 threads, we do not
measure cross-socket performance. We run the experiment with all
supported con�gurations, i.e., with 1/2/4/6 DIMMs. We physically
remove the unused PMem DIMMs but keep all six DRAM DIMMs,
following the o�cial memory population guide [12]. In Figure 15,
we show the bandwidth utilization of sequential and random read
and write workloads, as well as random read latency and operations
per second for tree index lookups and hash index updates.

In Figures 15a and b, we show the absolute bandwidth and rela-
tive improvement over the 1 DIMM con�guration. For reads and
writes, we observe two di�erent patterns. For write bandwidth, we
observe a near-perfect linear scale. Each DIMM is fully saturated
and constitutes a bottleneck. By adding more DIMMs, we evenly
distribute the load across all available DIMMs until we have reached
the maximum bandwidth. For sequential writes, we see a slightly
super-linear scale. With fewer DIMMs, the load on the individual
DIMMs is higher and the write combining bu�ers receive more
requests. They cannot combine adjacent stores as e�ciently, result-
ing in increasing write ampli�cation. When using 32 threads, this
e�ect is even stronger, as the bu�ers are overloaded with requests.
In this case, we observe an 11.9⇥ increase from one to six DIMMs.

Read bandwidth utilization shows super-linear scaling from one
to two and from two to four DIMMs. On currently supported CPUs,
con�guring a server with fewer than six PMemDIMMs results in an
unbalanced con�guration. While these unbalanced setups are sup-
ported, they are not recommend [44]. Memory controllers cannot
optimize the memory layout and must create multiple interleave
sets, resulting in worse performance. Additionally, the server must
run in single-channel mode when using a single DIMM, which
further reduces performance. For sequential reads with six DIMMs,
PMem achieves 42 GiB/s or 7 GiB/s per DIMM. With 1 DIMM, it
achieves only 5 GiB/s, which is ~30% worse.

Read latency decreases with more DIMMs, as the contention
on each is reduced. Once the load is distributed, latency is not
a�ected as much. This translates directly to the tree and hash index
operations shown in Figure 15d. The tree lookup is impacted more
by latency, so its performance does not improve as much as raw
bandwidth. The hash index updates re�ect the scaling of random
writes with an in�uence of increased preceding read bandwidth.

Overall, we see a predictable performance pattern when using
more than one DIMM, which allows us to transfer the results of pre-
vious work by approximately scaling the used number of DIMMs to
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Figure 15: Impact of number of DIMMs in the server (Apache-256). All runs with 16 threads. Sequential/random reads with 4096/256
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six. Our results show that Optane PMem should be con�gured fully
stocked and balanced to achieve maximum performance. However,
if this is not possible, prefer multiple smaller DIMMs, e.g., 4⇥ 128
GB = 512 GB, over fewer larger ones, e.g., 1⇥ 512 GB to achieve a
near-balanced con�guration and reduce the load on the individual
DIMMs, which otherwise quickly become over-saturated.

5 SERVER PRICE-PERFORMANCE
A major selling point of persistent memory is its lower price for
higher capacity than DRAM. However, there is very little actual
price-performance analysis in existing research. To provide insight
into this, we perform a price-performance comparison across all
evaluated servers. As major cloud vendors do yet not o�er PMem,
we base our analysis on the price as listed by Dell when con�guring
a server with Optane [49]. We note that the actual price of PMem
di�ers slightly depending on the source, country, and currency3,
but the relative di�erence between them is consistent. As such, our
focus is not on the exact monetary values but rather on the relative
di�erence between the servers. We base the performance-related
values on the price per GB to explicitly exclude the price of higher
capacity. As the A-128 server does not support 18 Watt, a compari-
son against the 18 Watt A-256, which supports this improvement,
does not yield unfair results. However, an 18 W 512 GB server may
achieve better price-performance than in our evaluation. To the
best of our knowledge, this is the �rst extensive price-performance
comparison of PMem across various con�gurations.

We show the price-performance results in Table 2. We �rst com-
pare the PMem servers and then draw an overall comparison to
DRAM. The price per GB capacity increases with the DIMM size, re-
sulting in an up to ~80% di�erence within the 100 Series. Across gen-
erations, i.e., Apache-256 to Barlow-256, the price per GB increases
by ~20%. The price for sequential and random read throughput
di�ers only slightly between the various PMem servers. However,
Apache-512 is an outlier, as it o�ers the lowest performance (cf.
Section 4.2) but the highest price, even when considering a 20%
performance improvement through an 18 W con�guration.

3We checked dell.de, dell.com, and hpe.com in February 2022 and December 2021.

We see a wider range in the price-performance for both sequen-
tial and random writes. They di�er by up to 1.5⇥ and 2.9⇥, respec-
tively. Due to signi�cantly higher write bandwidth (cf. Section 4.2),
it becomes apparent why both Apache-256 and Barlow-256 achieve
up to 25/40% lower prices than the cheapest server (Apache-128)
for sequential/random writes.

The price di�erence for hash index updates (normalized to 1
million operations) is amix of the random read andwrite prices. Due
to the low random read variance, the price variance across servers
is not as signi�cant as for pure random writes. The normalized 1
million tree lookups represent a random read workload and their
relative price-performance ratio does not di�er signi�cantly from
the random read ratios.

Regarding bandwidth and latency, DRAM outperforms PMem
signi�cantly (cf. Sections 4.2 and 4.3). However, DRAM’s price per
GB is up to 6.4⇥ higher than PMem’s. Our results show that PMem
is competitive with DRAM in most of the raw access patterns, i.e.,
sequential/random reads and sequential writes. DRAM outperforms
PMem for random writes, as PMem’s bandwidth is signi�cantly
lower for such workloads. This read/write split also extends to
more complex access in data structures, where DRAM outperforms
PMem for write-intensive operations but o�ers little to no bene�t
for read-only access.

To optimize the price-performance of a server for a given work-
load, users have to choose which and how many DIMMs to buy.
While this choice is heavily workload-dependent, our results show
that users can use the following rule of thumb:maximize the number
of DIMMs for a target capacity. If the workload �ts into DRAM, there
is no need for PMem, as this requires special CPUs and increases
the overall cost. If the workload exceeds DRAM, users should use =
DIMMs of the smallest size that o�er the needed capacity, i.e., users
should prefer 4⇥ 128 GB over 2⇥ 256 GB over 1⇥ 512 GB. Our results
in Section 4.5.3 show that the performance scales almost linearly,
so while 256 GB DIMMs have a better individual performance than
the 128 GB DIMMs, two 128 GB DIMMs outperform one 256 GB
DIMM while providing the same capacity at a lower overall price.
Thus, use larger DIMMs only when the capacity is needed, as the
price grows disproportionately higher for larger capacity.

Table 2: PMem price-performance comparison in Euro (e). See Table 1 for server info.

System e per
DIMM

e/System
(GB capacity)

e/GB
capacity

e/GB/s
seq. read

e/GB/s
rnd. read

e/GB/s
seq. write

e/GB/s
rnd. write

e/100ns
latency

e/update
hash index

e/lookup
tree index

Apache-128 1180 7080 (768) 9.21 0.25 0.34 0.78 3.43 46.34 0.39 0.56
Apache-256 2750 16500 (1536) 10.74 0.25 0.33 0.64 2.78 52.38 0.36 0.60
Apache-512 8500 51000 (3072) 16.60 0.56 0.61 1.52 6.18 83.94 0.71 0.96
Barlow-256 3270 26160 (2048) 12.77 0.22 0.33 0.60 2.12 64.49 0.27 0.42
B-DRAM 1900 15200 (256) 59.37 0.38 0.46 0.70 0.91 80.61 0.46 0.84

http://dell.de
http://dell.com
http://hpe.com


6 DISCUSSION
In this section, we present key takeaways from running PerMA-
Bench and PMem-aware systems on various server con�gurations.

PMem Con�gurations. Our results show that the exact server
con�guration has a large impact on PMem performance.We identify
four aspects that have not yet been studied in detail.
1) DIMM size: We show that the choice of DIMM size does not

only impact capacity but also performance, especially as only
the 256 and 512 GB DIMMs support higher power budgets.

2) Power budget: The 18 Watt power budget of Apache-256 im-
proves write bandwidth by up to 40%, which is a major improve-
ment considering PMem’s otherwise limited write bandwidth.
If possible (only for 256 and 512) and supported by the server,
users should increase the power budget of their DIMMs.

3) Number of DIMMs: Varying the number of DIMMs has a pre-
dictable, close-to-linear impact on performance unless only a
single DIMM is used. This causes an imbalanced memory con�g-
uration and a fallback to single-channel execution. For maximum
performance, fully stocked servers should be chosen.

4) Memory bus speed: While DRAM and PMem must run with
the same memory speed, we show that this does not impact
PMem. The theoretical limits exceed PMem’s performance, so
users can reduce the speed if needed without losing performance.

Future PMem Research.We identify four additional aspects that
impact PMem-aware implementations. With the increasing per-
formance of PMem, previous bottlenecks may shift away from
PMem to, e.g., the CPU, requiring more advanced and specialized
implementations. As PMem is a very new and evolving memory
technology, a detailed understanding and optimization level known
from DRAM must still be developed for it.
5) Hardware utilization: We observe that existing indexes do

not fully utilize the performance improvements of the second
generation. With more Optane con�gurations available, it is
essential to tune future designs across a wider range of servers
to achieve more stable performance.

6) Persist instruction:While the choice of persist instruction for
random writes impacts bandwidth by only 30% in the 100 Series,
it makes a di�erence of up to 2.5⇥ in the 200 Series. Future work
has to consider this and re-evaluate which choice of persist
instruction is best-suited for di�erent designs. Especially, now
that the 200 Series allows for two di�erent cache �ushes, non-
temporal stores, and no stores via eADR.

7) eADR: We show that omitting �ushes due to eADR does not
always yield the best performance. It remains important to un-
derstand when explicit �ushes improve bandwidth utilization
and latency, and when they do not.

8) Prefetcher: The prefetcher has an unexpected negative impact
on certain workloads.While it should not be disabled, developers
have to be aware that their system may be in�uenced by it.

Price-Performance. Within the �rst Optane generation, we iden-
tify 512 GB DIMMs to have the worst price-performance by a large
margin. But overall, we show that PMem’s price-performance is
generally competitive with DRAMor even better. This allows PMem
to be used as both explicit persistent memory or as cheaper and
larger volatile memory, potentially even allowing for in-memory
processing of workloads that previously did not �t into DRAM.

7 RELATEDWORK
In this section, we brie�y discuss related work around PMem.

Persistent Memory Analysis. Various studies on the perfor-
mance of PMem have been conducted. Earlier work focuses on
performance assumptions and latency ranges to evaluate PMem in
the context of various applications [1, 46, 53]. More recently, the per-
formance of Intel’s Optane DC Persistent Memory is investigated
in more detail [6, 10, 13, 24, 51, 56]. These studies provide insight
into the performance details of individual servers. In this work, we
evaluate and compare the performance of PMem across various se-
tups and show that this is needed to gain a better understanding of
overall PMem behavior. These early benchmarks and existing tools
such as fio [3] often run hard-coded queries or cannot represent
complex access patterns and varying persist instructions, which
are both essential to understand the performance of PMem for data-
base components. To represent access patterns of current PMem
systems, PerMA-Bench o�ers customizable, mixed PMem-DRAM
pointer-chasing with locality-aware store instructions.

Persistent Memory Applications. The use of PMem is widely
studied in index structures [9, 17, 32, 36, 39, 41, 46, 59], key-value
stores [5, 8, 35], database systems [1, 2, 40, 40, 45, 50], and �lesys-
tems [28, 43, 55]. We extract common access patterns from this
work and de�ne the workloads in PerMA-Bench based on them.

8 CONCLUSION
In this paper, we propose PerMA-Bench, a con�gurable benchmark
framework that allows users to evaluate the bandwidth, latency,
and operations per second for customizable database-related PMem
access. We perform an extensive analysis across four PMem servers
of the �rst and second Optane generation, with varying con�gu-
ration options, such as DIMM power budget, memory bus speed,
and number of DIMMs per server. We show which impact these
con�gurations have on performance and raise awareness for the
overall con�guration space of PMem. We validate our results with
existing implementations and show that they do not fully utilize the
performance improvements across Optane generations. We show
that the choice of persist instruction has a high performance impact
and that avoiding explicit �ushes in eADR does not always yield the
best results. Finally, we perform a price-performance comparison
across all evaluated servers. While there are great di�erences be-
tween Optane DIMMs, PMem is generally competitive with DRAM.
This allows PMem to be used as both explicit persistent memory or
cheaper and larger volatile memory.

PMem is still a new and evolving technology and research into
PMem-aware databases is still in its infancy compared to DRAM.
We present directions for future designs, implementations, and
evaluation of PMem solutions that are needed to fully understand
and utilize the hardware. We make our evaluation results available
and with PerMA-Bench, we hope to lead the way to a common
understanding of PMem performance by gathering and comparing
various existing con�gurations and future PMem hardware.

Acknowledgements: This work was partially funded by the German
Ministry for Education and Research (01IS18025A/01IS18037A), the German
Research Foundation (414984028), and the European Union’s Horizon 2020
research and innovation programme (957407). We thank Piotr Balcer, Igor
Chorazewicz, and Andy Rudo� for their valuable input and server access.



REFERENCES
[1] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s talk about stor-

age & recovery methods for non-volatile memory database systems. In SIGMOD
’15. ACM, 707–722. https://doi.org/10.1145/2723372.2749441

[2] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-behind logging.
Proceedings of the VLDB Endowment 10, 4, 337–348. https://doi.org/10.14778/
3025111.3025116

[3] Jens Axboe. 2022. �o: Flexible I/O Tester. https://github.com/axboe/�o
[4] I.G. Baek, M.S. Lee, S. Sco, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S.

Kim, I.K. Yoo, U.-I. Chung, and J.T. Moon. 2004. Highly scalable non-volatile
resistive memory using simple binary oxide driven by asymmetric unipolar
voltage pulses. In IEDM Technical Digest. IEEE International Electron Devices
Meeting. IEEE. https://doi.org/10.1109/iedm.2004.1419228

[5] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An E�cient
Hybrid PMem-DRAM Key-Value Store. Proceedings of the VLDB Endowment 14,
9, 1544 – 1556. https://doi.org/10.14778/3461535.3461543

[6] Maximilian Böther, Otto Kißig, Lawrence Benson, and Tilmann Rabl. 2021. Drop
It In Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Replacement
for NVMe SSDs. In DaMoN ’21. ACM. https://doi.org/10.1145/3465998.3466010

[7] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. uTree:
a persistent B+-tree with low tail latency. Proceedings of the VLDB Endowment
13, 12, 2634–2648. https://doi.org/10.14778/3407790.3407850

[8] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An E�cient Log-Structured Key-Value Storage Engine for Persistent
Memory. In ASPLOS ’20. ACM, 1077–1091. https://doi.org/10.1145/3373376.
3378515

[9] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concurrent
Level Hashing for Persistent Memory. In ATC ’20. USENIX Association, 799–812.

[10] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing persistent memory bandwidth utilization for OLAP workloads. In
SIGMOD ’21. ACM. https://doi.org/10.1145/3448016.3457292

[11] Hewlett Packard Enterprise. 2021. HPE NVDIMMs Memory – Overview. https:
//support.hpe.com/hpesc/public/docDisplay?docId=c05302373

[12] Hewlett Packard Enterprise. 2021. Server memory and persistent memory popu-
lation rules for HPE Gen10 servers with Intel Xeon Scalable processors technical
white paper. https://www.hpe.com/psnow/doc/a00017079enw

[13] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
idiosyncrasies of real persistent memory. Proceedings of the VLDB Endowment
14, 4, 626–639. https://doi.org/10.14778/3436905.3436921

[14] Xiaochen Guo, Engin Ipek, and Tolga Soyata. 2010. Resistive Computation:
Avoiding the Power Wall with Low-Leakage, STT-MRAM Based Computing. In
ISCA ’10. ACM Press, 371–382. https://doi.org/10.1145/1815961.1816012

[15] Yuliang He, Duo Lu, Kaisong Huang, and Tianzheng Wang. 2022. Evaluating
Persistent Memory Range Indexes: Part Two. arXiv:2201.13047 [cs]. http://arxiv.
org/abs/2201.13047

[16] Uwe Heinz. 2020. SAP HANA and Persistent Memory. https://blogs.sap.com/
2020/01/30/sap-hana-and-persistent-memory

[17] Kaisong Huang, TianzhengWang, Darien Imai, and Dong Xie. 2022. SSDs Striking
Back:The Storage Jungle and Its Implications on Persistent Indexes. In CIDR ’22.
1–8.

[18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. 187–200.
https://www.usenix.org/conference/fast18/presentation/hwang

[19] Intel. 2019. Intel® Optane™ DC Persistent Memory Product Brief.
https://www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/optane-dc-persistent-memory-brief.pdf

[20] Intel. 2020. Intel® Optane™ Persistent Memory 200 Series Brief.
https://www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/optane-persistent-memory-200-series-brief.pdf

[21] Intel. 2020. Optimizing Write Ahead Logging with Intel® Optane™ Persis-
tent Memory. https://software.intel.com/content/www/us/en/develop/articles/
optimizing-write-ahead-logging-with-intel-optane-persistent-memory.html

[22] Intel. 2021. Intel Xeon Processors. https://www.intel.com/content/www/us/en/
products/details/processors/xeon.html

[23] Intel. 2021. Intel® 64 and IA-32 Architectures Software Developer’s Manual
Volume 1: Basic Architecture. https://software.intel.com/content/dam/develop/
external/us/en/documents-tps/253665-sdm-vol-1.pdf

[24] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor,
Jishen Zhao, and Steven Swanson. 2019. Basic Performance Measurements
of the Intel Optane DC Persistent Memory Module. arXiv:1903.05714 [cs].
http://arxiv.org/abs/1903.05714

[25] JEDEC. 2020. Byte Addressable Energy Backed Interface. https://www.jedec.
org/standards-documents/docs/jesd245a

[26] JEDEC. 2021. DDR4 NVDIMM-P Bus Protocol. https://www.jedec.org/standards-
documents/docs/jesd304-401

[27] JEDEC. 2021. JEDEC Publishes DDR4 NVDIMM-P Bus Protocol Stan-
dard. https://www.jedec.org/news/pressreleases/jedec-publishes-ddr4-nvdimm-

p-bus-protocol-standard
[28] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,

and Vijay Chidambaram. 2019. SplitFS: reducing software overhead in �le systems
for persistent memory. In SOSP ’19. ACM, 494–508. https://doi.org/10.1145/
3341301.3359631

[29] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges and
solutions for fast remote persistent memory access. In Proceedings of the 11th
ACM Symposium on Cloud Computing. ACM, 105–119. https://doi.org/10.1145/
3419111.3421294

[30] Dimitrios Koutsoukos, Raghav Bhartia, Ana Klimovic, and Gustavo Alonso. 2021.
How to use Persistent Memory in your Database. arXiv:2112.00425 [cs]. http:
//arxiv.org/abs/2112.00425

[31] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
phase change memory as a scalable dram alternative. In ISCA '09. ACM Press.
https://doi.org/10.1145/1555754.1555758

[32] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. Recipe: converting concurrent DRAM indexes to persistent-
memory indexes. In SOSP ’19. ACM, 462–477. https://doi.org/10.1145/3341301.
3359635

[33] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. Association for Computing Machinery, 743–754. https:
//doi.org/10.1145/2588555.2610507

[34] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating persistent memory range indexes. Proceedings of the
VLDB Endowment 13, 4, 574–587. https://doi.org/10.14778/3372716.3372728

[35] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. Enabling
low tail latency on multicore key-value stores. Proceedings of the VLDB Endow-
ment 13, 7, 1091–1104. https://doi.org/10.14778/3384345.3384356

[36] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+Trees: optimizing persistent
index performance on 3DXPoint memory. Proceedings of the VLDB Endowment
13, 7, 1078–1090. https://doi.org/10.14778/3384345.3384355

[37] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. 2019.
PMTest: A Fast and Flexible Testing Framework for Persistent Memory Programs.
In ASPLOS ’19. ACM, 411–425. https://doi.org/10.1145/3297858.3304015

[38] Zhiye Liu. 2018. Fujitsu Targets 2019 for NRAM Mass Production. https://www.
tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html

[39] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. Proceedings of the VLDB Endowment 13, 8, 1147–
1161. https://doi.org/10.14778/3389133.3389134

[40] Tobias Maltenberger, Till Lehmann, Lawrence Benson, and Tilmann Rabl. 2022.
Evaluating In-Memory Hash Joins on Persistent Memory. In EDBT ’22. OpenPro-
ceedings.org, 2:368–2:372. https://doi.org/10.48786/edbt.2022.23

[41] Moohyeon Nam, Hokeun Cha, Young-Ri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-optimized dynamic hashing for persistent memory. In FAST ’19.
USENIX Association, 31–44.

[42] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter,
and Baris Kasikci. 2020. AGAMOTTO: How Persistent is your Persistent Memory
Application?. In OSDI ’20. 1047–1064.

[43] Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan, Youngjin Kwon, Simon
Peter, and Baris Kasikci. 2021. Rethinking File Mapping for Persistent Memory.
97–111. https://www.usenix.org/conference/fast21/presentation/neal

[44] Matt Ogle, Trent Bates, Bruce Wagner, and Rene Franco. 2021. How to Balance
Memory on 2nd Generation Intel Xeon Scalable Processors. https://downloads.
dell.com/manuals/common/balancing_memory_xeon_2nd_gen.pdf

[45] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas
Willhalm. 2014. SOFORT: a hybrid SCM-DRAM storage engine for fast data
recovery. In DaMoN ’14. ACM, 1–7. https://doi.org/10.1145/2619228.2619236

[46] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree
for Storage Class Memory. In SIGMOD ’16. ACM, 371–386. https://doi.org/10.
1145/2882903.2915251

[47] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009. Scal-
able high performance main memory system using phase-change memory tech-
nology. In ISCA '09. ACM Press. https://doi.org/10.1145/1555754.1555760

[48] SNIA. 2021. NVM Programming Model (NPM). https://www.snia.org/tech_
activities/standards/curr_standards/npm

[49] Dell Technologies. 2022. Dell Rack Servers. https://www.dell.com/de-de/work/
shop/deals/enterprise-deals/poweredge-rack-server-deals

[50] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In SIGMOD ’18. ACM,
1541–1555. https://doi.org/10.1145/3183713.3196897

[51] Alexander Van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent memory I/O primitives. In DaMoN ’19. ACM, 12:1–12:7.
https://doi.org/10.1145/3329785.3329930

https://doi.org/10.1145/2723372.2749441
https://doi.org/10.14778/3025111.3025116
https://doi.org/10.14778/3025111.3025116
https://github.com/axboe/fio
https://doi.org/10.1109/iedm.2004.1419228
https://doi.org/10.14778/3461535.3461543
https://doi.org/10.1145/3465998.3466010
https://doi.org/10.14778/3407790.3407850
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3448016.3457292
https://support.hpe.com/hpesc/public/docDisplay?docId=c05302373
https://support.hpe.com/hpesc/public/docDisplay?docId=c05302373
https://www.hpe.com/psnow/doc/a00017079enw
https://doi.org/10.14778/3436905.3436921
https://doi.org/10.1145/1815961.1816012
http://arxiv.org/abs/2201.13047
http://arxiv.org/abs/2201.13047
https://blogs.sap.com/2020/01/30/sap-hana-and-persistent-memory
https://blogs.sap.com/2020/01/30/sap-hana-and-persistent-memory
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://software.intel.com/content/www/us/en/develop/articles/optimizing-write-ahead-logging-with-intel-optane-persistent-memory.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-write-ahead-logging-with-intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/253665-sdm-vol-1.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/253665-sdm-vol-1.pdf
http://arxiv.org/abs/1903.05714
https://www.jedec.org/standards-documents/docs/jesd245a
https://www.jedec.org/standards-documents/docs/jesd245a
https://www.jedec.org/standards-documents/docs/jesd304-401
https://www.jedec.org/standards-documents/docs/jesd304-401
https://www.jedec.org/news/pressreleases/jedec-publishes-ddr4-nvdimm-p-bus-protocol-standard
https://www.jedec.org/news/pressreleases/jedec-publishes-ddr4-nvdimm-p-bus-protocol-standard
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/3419111.3421294
http://arxiv.org/abs/2112.00425
http://arxiv.org/abs/2112.00425
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3384345.3384356
https://doi.org/10.14778/3384345.3384355
https://doi.org/10.1145/3297858.3304015
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.48786/edbt.2022.23
https://www.usenix.org/conference/fast21/presentation/neal
https://downloads.dell.com/manuals/common/balancing_memory_xeon_2nd_gen.pdf
https://downloads.dell.com/manuals/common/balancing_memory_xeon_2nd_gen.pdf
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/1555754.1555760
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.dell.com/de-de/work/shop/deals/enterprise-deals/poweredge-rack-server-deals
https://www.dell.com/de-de/work/shop/deals/enterprise-deals/poweredge-rack-server-deals
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3329785.3329930


[52] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2020. Building blocks for persistent memory. The VLDB Journal. https:
//doi.org/10.1007/s00778-020-00622-9

[53] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1,
91–104. https://doi.org/10.1145/1961295.1950379

[54] Yinjun Wu, Kwanghyun Park, Rathijit Sen, Brian Kroth, and Jaeyoung Do. 2020.
Lessons learned from the early performance evaluation of Intel optane DC per-
sistent memory in DBMS. In Proceedings of the 16th International Workshop on
Data Management on New Hardware. Association for Computing Machinery, 1–3.
https://doi.org/10.1145/3399666.3399898

[55] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In FAST ’16. USENIX Association,

323–338. https://www.usenix.org/node/194455
[56] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-

son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In FAST ’20. USENIX Association, 169–182.

[57] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: reducing consistency cost for NVM-based single
level systems. In FAST ’15. USENIX Association, 167–181.

[58] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy
e�cient main memory using phase change memory technology. In ISCA '09.
ACM Press. https://doi.org/10.1145/1555754.1555759

[59] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
di�erential indexing for persistent memory. Proceedings of the VLDB Endowment
13, 4, 421–434. https://doi.org/10.14778/3372716.3372717

https://doi.org/10.1007/s00778-020-00622-9
https://doi.org/10.1007/s00778-020-00622-9
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1145/3399666.3399898
https://www.usenix.org/node/194455
https://doi.org/10.1145/1555754.1555759
https://doi.org/10.14778/3372716.3372717

	Abstract
	1 Introduction
	2 Persistent Memory
	2.1 Persistent Memory Types
	2.2 Accessing Persistent Memory

	3 Introducing PerMA-Bench
	3.1 Runtime
	3.2 Custom Workloads and Configuration
	3.3 Persist Instructions

	4 PerMA-Bench Results
	4.1 Setup And Methodology
	4.2 Raw Performance Workloads – Bandwidth
	4.3 Raw Performance Workloads - Latency
	4.4 Database-Related Workloads
	4.5 Single Server Performance

	5 Server Price-Performance
	6 Discussion
	7 Related Work
	8 Conclusion
	References

