
Efficient State Management with
Persistent Memory

Lawrence Benson

Universitätsdissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

in der Wissenschaftsdisziplin
IT-Systems Engineering

eingereicht an der
Digital-Engineering-Fakultät
der Universität Potsdam

Datum der Disputation: 09.11.2023

Betreuer
Prof. Dr. Tilmann Rabl
Hasso Plattner Institut, Universität Potsdam

Gutachter
Prof. Tianzheng Wang, PhD
Simon Fraser University

Prof. Pinar Tözün, PhD
IT University of Copenhagen

0Abstract
Efficiently managing large state is a key challenge for data management systems.

Traditionally, state is split into fast but volatile state in memory for processing and

persistent but slow state on secondary storage for durability. Persistent memory

(PMem), as a new technology in the storage hierarchy, blurs the lines between

these states by offering both byte-addressability and low latency like DRAM as

well persistence like secondary storage. These characteristics have the potential to

cause a major performance shift in database systems.

Driven by the potential impact that PMem has on data management systems,

in this thesis we explore their use of PMem. We first evaluate the performance of

real PMem hardware in the form of Intel Optane in a wide range of setups. To this

end, we propose PerMA-Bench, a configurable benchmark framework that allows

users to evaluate the performance of customizable database-related PMem access.

Based on experimental results obtained with PerMA-Bench, we discuss findings

and identify general and implementation-specific aspects that influence PMem

performance and should be considered in future work to improve PMem-aware

designs. We then propose Viper, a hybrid PMem-DRAM key-value store. Based

on PMem-aware access patterns, we show how to leverage PMem and DRAM

efficiently to design a key database component. Our evaluation shows that Viper

outperforms existing key-value stores by 4–18× for inserts while offering full data

persistence and achieving similar or better lookup performance. Next, we show

which changes must be made to integrate PMem components into larger systems.

By the example of stream processing engines, we highlight limitations of current

designs and propose a prototype engine that overcomes these limitations. This

allows our prototype to fully leverage PMem’s performance for its internal state

management. Finally, in light of Optane’s discontinuation, we discuss how insights

from PMem research can be transferred to future multi-tier memory setups by the

example of Compute Express Link (CXL).

Overall, we show that PMem offers high performance for state management,

bridging the gap between fast but volatile DRAM and persistent but slow secondary

storage. Although Optane was discontinued, new memory technologies are contin-

uously emerging in various forms and we outline how novel designs for them can

build on insights from existing PMem research.

iii

0Zusammenfassung

Die effiziente Verwaltung großer Zustände ist eine zentrale Herausforderung für

Datenverwaltungssysteme. Traditionell wird der Zustand in einen schnellen, aber

flüchtigen Zustand im Speicher für die Verarbeitung und einen persistenten, aber

langsamen Zustand im Sekundärspeicher für die Speicherung unterteilt. Persistenter

Speicher (PMem), eine neue Technologie in der Speicherhierarchie, lässt die Grenzen

zwischen diesen Zuständen verschwimmen, indem er sowohl Byte-Adressierbarkeit

und geringe Latenz wie DRAM als auch Persistenz wie Sekundärspeicher bietet.

Diese Eigenschaften haben das Potenzial, die Leistung von Datenbanksystemen

grundlegend zu verändern.

Aufgrund der potenziellen Auswirkungen, die PMem auf Datenverwaltungssys-

teme hat, untersuchen wir in dieser Arbeit ihre Verwendung von PMem. Zunächst

evaluierenwir die Leistung von echter PMem-Hardware in Form von Intel Optane in

einer Vielzahl von Konfigurationen. Zu diesem Zweck stellen wir PerMA-Bench vor,

ein konfigurierbares Benchmark-Framework, mit dem Benutzer die Leistung von

anpassbaren datenbankbezogenen PMem-Zugriffen untersuchen können. Auf der

Grundlage der mit PerMA-Bench erzielten experimentellen Ergebnisse diskutieren

wir unsere Erkenntnisse und identifizieren allgemeine und implementierungsspezi-

fische Aspekte, die die PMem-Leistung beeinflussen und in zukünftigen Arbeiten be-

rücksichtigt werden sollten, um PMem-fähige Designs zu verbessern. Anschließend

präsentieren wir Viper, einen hybriden PMem-DRAM Key-Value-Store. Basierend

auf PMem-bewussten Zugriffsmustern zeigen wir, wie PMem und DRAM effizient

genutzt werden können, um eine wichtige Datenbankkomponente zu entwickeln.

Unsere Evaluierung zeigt, dass Viper bestehende Key-Value-Stores bei Einfügungen

um 4- bis 18-mal übertrifft, während er gleichzeitig vollständige Datenpersistenz

bietet und ähnliche oder bessere Lookup-Leistung erzielt. Als nächstes zeigen wir,

welche Änderungen vorgenommen werden müssen, um PMem-Komponenten in

größere Systeme zu integrieren. Am Beispiel von Datenstromverarbeitungssys-

temen zeigen wir die Einschränkungen aktueller Designs auf und stellen einen

Prototyp eines Systems vor, das diese Einschränkungen überwindet. Dadurch kann

unser Prototyp die Leistung von PMem für die interne Zustandsverwaltung voll

ausnutzen. Schließlich erörtern wir angesichts der Abkündigung von Optane, wie

Erkenntnisse aus der PMem-Forschung am Beispiel von Compute Express Link

(CXL) auf künftige mehrstufige Speicher-Setups übertragen werden können.

v

Insgesamt zeigen wir, dass PMem eine hohe Leistungsfähigkeit für die Zustands-

verwaltung bietet und die Lücke zwischen schnellem, aber flüchtigem DRAM und

beständigem, aber langsamem Sekundärspeicher schließt. Obwohl Optane ein-

gestellt wurde, entstehen ständig neue Speichertechnologien in verschiedenen

Formen, und wir skizzieren, wie neuartige Entwürfe für sie auf den Erkenntnissen

aus der bestehenden PMem-Forschung aufbauen können.

vi

0Contents
Abstract iii

Zusammenfassung v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1

1.2 Research Contribution . 5

1.3 Technical Contributions and Impact 6

1.4 Additional Contributions . 8

1.5 Thesis Outline . 9

2 Background 11
2.1 Persistent Memory . 11

2.1.1 Types . 11

2.1.2 Intel Optane . 12

2.1.3 Accessing Persistent Memory 15

2.1.4 Atomicity and Durability 18

2.1.5 Programming Interfaces and APIs 20

3 Benchmarking Persistent Memory Access 23
3.1 Introduction . 23

3.2 Introducing PerMA-Bench . 25

3.2.1 Runtime . 25

3.2.2 Custom Workloads and Configuration 27

3.2.3 Persist Instructions . 29

3.3 PerMA-Bench Results . 29

3.3.1 Setup And Methodology 30

3.3.2 Raw Performance Workloads – Bandwidth 31

vii

3.3.3 Raw Performance Workloads - Latency 35

3.3.4 Database-Related Workloads 38

3.3.5 Single Server Performance 43

3.4 Server Price-Performance . 47

3.5 Discussion . 50

3.6 Related Work . 51

3.7 Conclusion . 52

4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store 53
4.1 Introduction . 53

4.2 Background . 55

4.3 Viper: A Hybrid Key-Value Store 55

4.3.1 Hybrid Design . 56

4.3.2 Architecture . 59

4.4 Key-Value Store Operations . 62

4.4.1 Viper Client . 63

4.4.2 Put . 64

4.4.3 Get . 66

4.4.4 Update . 67

4.4.5 Delete . 67

4.4.6 Space Reclamation . 68

4.4.7 Recovery . 68

4.5 Evaluation . 69

4.5.1 Setup and Methodology 69

4.5.2 Other Systems . 69

4.5.3 Micro Benchmarks . 70

4.5.4 YCSB . 79

4.6 Related Work . 80

4.7 Conclusion . 82

5 Darwin: Scale-In Stream Processing 83
5.1 Introduction . 83

5.2 Background . 85

5.3 Current SPE Challenges . 86

5.3.1 Focus of Existing Systems 86

5.3.2 State Management . 88

5.3.3 Resource Inefficiency . 88

5.3.4 Overall System Optimization 88

viii

5.4 Scale-In Stream Processing . 89

5.4.1 Opportunities for State Management 90

5.4.2 Opportunities for Resource Inefficiency 93

5.4.3 Opportunities for System Optimization 94

5.5 Introducing Darwin . 95

5.5.1 Darwin Architecture . 95

5.5.2 Performance . 97

5.6 Conclusion . 98

6 What We Can Learn from Persistent Memory for CXL 99
6.1 Introduction . 99

6.2 Compute Express Link . 100

6.3 Transferring Insights from PMem to CXL-Attached Memory . . . 100

6.4 Conclusion . 104

7 Conclusion & Outlook 107
7.1 Conclusion . 107

7.2 Research Outlook . 108

References 111

ix

0List of Figures
1.1 PMem sits between SSDs and DRAM in the storage hierarchy. . . 2

2.1 Six interleaved Optane DIMMs span a continuous 24 KiB region. . 12

2.2 Standard PMem access modes. 16

2.3 Writing to NVDIMM-Ps from the CPU. 17

3.1 Execution cycle of a benchmark in PerMA-Bench. 26

3.2 Sequential and random read bandwidth 31

3.3 Thread and access size impact on sequential writes. 33

3.4 Impact of persist instruction on write bandwidth. 34

3.5 256 Byte random read + write latency. 36

3.6 Double-flush latency. 37

3.7 PMem index workloads compared to DRAM. 39

3.8 Hash index in PerMA and Dash. 40

3.9 Tree index in PerMA and FAST+FAIR. 41

3.10 Impact of eADR on write performance. 43

3.11 Impact of prefetcher on random read bandwidth. 44

3.12 Performance-impact of varying memory bus speeds. 45

3.13 Impact of number of DIMMs in the server. 46

4.1 Write latency for various write patterns to DRAM and PMem. . . 57

4.2 Viper’s storage aligned with 4 KB PMem layout. 58

4.3 Viper’s architecture. 59

4.4 VPage layout with example entries. 61

4.5 Client requesting new VBlock. 63

4.6 Performance of core KVS operations. 71

4.7 Key-value size impact. 73

4.8 Variable-sized ∼216 Byte records. 74

4.9 Total memory. 75

4.10 Update strategy. 75

4.11 Viper versions. 76

4.12 Operation breakdown. 77

4.13 Space reclamation. 78

4.14 YCSB latency and throughput. 79

xi

5.1 Insert and get performance. 90

5.2 Checkpoint and recovery duration. 91

5.3 Grouped state access performance. 92

5.4 Darwin’s architecture and execution flow. 95

5.5 Throughput of Darwin, Grizzly, and Flink. 98

6.1 Performance of PerMA and actual index implementations. 101

6.2 Impact of prefetcher on PMem random read bandwidth. 102

xii

0List of Tables
2.1 Maximum per-DIMM Optane performance per generation. 14

3.1 Evaluated servers. 30

3.2 PMem price-performance comparison. 48

5.1 Feature set of existing SPEs. 87

6.1 Price-performance of PMem and DRAM. 103

xiii

1 Introduction

1.1 Motivation
For decades, data management systems were designed with a divide between data

in main memory and data on secondary storage. While storage devices, such as

HDDs and SSDs, have significantly lower access performance than DRAM, they

are necessary to provide durability. Thus, systems that offer data persistence face a

performance drop when durably writing data to storage and when retrieving it back

for processing. In addition to providing durability, storage devices are significantly

cheaper per GB than memory and offer much higher capacity. For economical

reasons, systems often choose to reduce the amount of required DRAM and limit

its use to processing and intermediate results, while the majority of the actual

data is stored on HDDs or SSDs. However, limited DRAM may entail access to

secondary storage for large intermediate results or even for auxiliary structures

such as indexes.

To mitigate the storage access performance drop, various research areas focus

on designing efficient storage solutions for data management systems. Such re-

search areas are buffer management [34, 119], persistent indexes [11], and storage

engines [35, 38]. For the majority of these, key design goals are to reduce storage

access in the first place and to leverage efficient access patterns to storage when-

ever possible. Due to the high importance of these systems, they are continuously

adapted to new hardware characteristics [89, 92].

After decades of established DRAM and storage database components, the an-

nouncement and arrival of large-scale persistent memory (PMem) technology in

the form of Intel Optane [69] led to a rethinking of how persistence is achieved in

data management systems. With byte-addressability and performance like DRAM

as well as persistence like secondary storage, PMem as a new technology has

the potential to cause a major performance shift in database storage and systems.

In traditional designs, byte-addressable data is used for fast random access but

is generally considered volatile, while persistent data layouts are optimized for

slower storage, i.e., page-sized and/or sequential access. PMem blurs these lines,

as it achieves fast random access on persistent data, removing the need for a clear

distinction between memory and storage.

In Figure 1.1, we show how PMem fits between DRAM and SSDs in the classical

1

Chapter 1 Introduction

HDD
SSD

DRAM
Cache
CPU

PMem

Ca
pa

cit
y,

La
te

nc
y Bandwidth, Cost

Figure 1.1: PMem sits between SSDs and DRAM in the storage hierarchy.

storage hierarchy. We present this based on four factors, capacity, cost (GB/$),
latency, and bandwidth. Due to its characteristics, PMem fits between SSDs and

DRAM, both in anticipated performance before the commercial availability of

Optane [123, 129] and with the actual performance of Optane [147].

With capacities of 128–512 GB per DIMM, Optane has a higher capacity than

DRAM, which is currently available in ~ 8–64 GB per DIMM. SSDs, on the other

hand, are available with multiple TB per device. Based on these capacities, SSDs

offer more GB/$ than PMem [19], which in turn offers more GB/$ than DRAM [15].

Modern SSDs are in the order of tens of cents per GB, Optane is in the order of

dollars per GB, and DRAM ranges from dollars to low tens of dollars per GB.

With random access latency in the order of hundreds of nanoseconds, PMem’s

latency is very close to DRAM’s [147], compared to tens or hundreds of microsec-

onds latency to SSD [49]. The bandwidth of a single PMem DIMM is currently

similar to that of modern NVMe SSDs, i.e., in the low GB/s [19]. Thus, PMem has

more potential for latency-critical applications than for bandwidth-heavy ones.

Even before PMem was publicly available, the promise of these characteristics

sparked research into how index structures [58, 123, 148], storage engines [6,

145], and buffer managers [129] can be redesigned for PMem. With the public

availability of real PMem in the form of Optane, research in these areas shifted

to Optane-specific designs [26, 91, 97, 155]. These systems raised the question of

how to integrate PMem into data management systems and they led to an initial

understanding of multi-tier memory in these systems. In this thesis, we address

many remaining open questions on how to best design data management systems

to fully leverage large-scale PMem as a new technology.

2

Motivation Section 1.1

As Optane is currently the only instance of large-scale PMem and it was discon-

tinued by Intel in 2022 [2], the technology’s future is currently unclear. Two key

aspects that influence the use of PMem are the underlying technology and the way

this is connected to the CPU. On the technology side, various other PMem designs

have been announced in the past decade [10, 48, 86, 100, 127, 154], but none of

them are available yet. Intel’s choice to discontinue Optane is mainly driven by

economic factors [41], so a new technology with different properties might change

the economics of PMem, making it more viable. On the connection side, Compute

Express Link (CXL) is an emerging interconnect protocol that allows arbitrary

memory to be attached to the CPU via PCIe instead of memory channels. With

different types of memory on one server, and potentially even alternative PMem

technologies, multi-tier memory setups face similar challenges as with a two-tiered

DRAM/PMem setup. CXL may also alter the economics of PMem, as it does not

require a high-end Intel CPU to use PMem. Regardless of the exact development of

PMem, future technology will likely disrupt the classical storage hierarchy similarly

to Optane. With each such technology, an open question remains how to integrate

it best. While this thesis mainly covers various challenges around the integration

of PMem, we also provide insights into challenges and opportunities for future

multi-tier memory setups based on our learnings from PMem.

Driven by the promising results of pre-Optane designs and the potential impact

that PMem has on database systems, in this thesis we explore the use of PMem

in data management systems. We do this along four goals, starting with under-

standing its performance, over designing database components for PMem and their

integration into larger systems, to transferring PMem insights to future research on

multi-tier memory. We outline these four motivational challenges in the following.

Challenge 1: Understanding PMem performance. Before PMem became

commercially available, research assumed a performance range that PMem may

cover, i.e., experiments were often conducted in simulators that supported varying

access latency [123, 148]. This led to a wide range of inconsistent performance

numbers. With the arrival of Intel Optane, research shifted towards understanding

the “actual” performance of PMem [47, 138, 147]. Based on these findings, designs

specifically targeted towards Optane emerged, fully leveraging its intricacies and

performance characteristics [26, 97, 101]. However, with limited hardware avail-

ability, different server configurations, and multiple hardware generations, it is not

clear how consistently Optane performs in a wider range of setups. Because of this

limited insight, it is also unclear whether the Optane-optimized designs generalize

or if they are tailored only toward a single server.

Challenge 2: Designing PMem-aware storage systems. Key-value stores

3

Chapter 1 Introduction

(KVSs) have become a foundation for state management in modern data-intensive

applications and systems. Current designs are either based on secondary storage

to offer persistence, e.g., in a storage layer [38], or are purely in-memory for fast

access, e.g., for caching [128]. Regardless of the intended use, as a fundamental

part of modern database stacks, the performance of KVSs is essential to the overall

system performance. Due to their comparatively simple interface around put() and
get() calls on individual records, most logic in a KVS is concerned with record access,

i.e., storing and retrieving these records. Leveraging PMem and its characteristics

has the potential to significantly improve this access and in turn, improve the

performance of all systems building on such a PMem-aware KVS. Early work in

this space shows that PMem shifts the performance from traditional KVSs based

on slow secondary storage towards faster but volatile in-memory KVS, while still

offering persistence [26, 91]. However, it is unclear how to best design such a

PMem-aware KVS, especially concerning fundamental memory access patterns and

the interaction between faster but limited DRAM and slower but ample PMem.

Challenge 3: Integrating PMem components into larger systems. While

it is important to research and develop standalone database components for PMem,

simply drop-in replacing these into existing systems does not necessarily yield

the best results [19, 81]. It is important to understand the limitations of current

systems to fully leverage PMem’s potential by using it in the right places. In

recent years, stream processing engines (SPEs), such as Apache Flink [21] or Spark

Streaming [150], have become widely used in industry for low-latency processing

of large data volumes. As SPEs commonly have high ingestion rates, they put a lot

of pressure on the underlying storage system, making the potential performance

gains from PMem-aware storage engines very high. Due to a wide range of SPE

designs and goals, it is unclear which design choices must be made to integrate

novel PMem storage engines and which performance can be achieved with the

bandwidth and low latency that PMem promises.

Challenge 4: Implications of PMem research on multi-tier memory. Be-
sides PMem, other approaches to and designs for multi-tier memory exist. The

Compute Express Link (CXL) [30] interconnect is one of these approaches, which

offers byte-addressability to and from arbitrary memory and storage via a PCIe-

based protocol. After Optane was discontinued by Intel in 2022 in favor of CXL [41],

it is yet unclear which insights gained from PMem research can be transferred to

future multi-tier memory setups as given with CXL.

4

Research Contribution Section 1.2

1.2 Research Contribution
In this section, we present this thesis’ research question and briefly outline our

contribution to each of the individual goals on the path to answering this question.

Combining all four motivational challenges described above (Challenge 1–4), in this

thesis we discuss the following research question:

With the emergence of a fundamentally different memory technology
in the form of persistent memory, how do data management systems
need to be designed to leverage its unique properties for efficient state
management and how can we extend these insights to future disruptive
memory technologies?

To answer this question, we make the following contributions. Before analyzing

PMem performance or designing novel systems, we provide an overview of PMem

terminology and concepts in general and specifically for Optane (Chapter 2).

Contribution 1: Understanding PMem performance. In Chapter 3, we eval-

uate the performance characteristics of Optane PMem to answer the questions

outlined in Challenge 1. We propose PerMA-Bench, a configurable benchmark

framework that allows users to evaluate the bandwidth, latency, and operations per

second for customizable database-related PMem access. Based on PerMA-Bench,

we perform an extensive evaluation of PMem performance across four different

server configurations, containing both first- and second-generation Optane, with

additional parameters such as DIMM power budget and number of DIMMs per

server. We validate our results with existing systems and show the impact of

low-level design choices. We discuss our findings and identify eight general and

implementation-specific aspects that influence PMem performance and should

be considered in future work to improve PMem-aware designs. The content of

Chapter 3 was published in PVLDB 15(11), 2022 [15].

Contribution 2: Designing PMem-aware storage systems. In Chapter 4, we
investigate how to design a PMem-aware storage system in the form of a KVS, as

motivated in Challenge 2 above. We propose three PMem-specific access patterns

and implement them in a hybrid PMem-DRAM KVS called Viper. We employ a

DRAM-based hash index and a PMem-aware storage layout to utilize the random

write speed of DRAM and the efficient sequential write performance of PMem. Our

evaluation shows that Viper significantly outperforms existing KVSs for core KVS

operations while providing full data persistence. The content of Chapter 4 was

published in PVLDB 14(9), 2021 [14].

Contribution 3: Integrating PMem components into larger systems. In
Chapter 5, we discuss open challenges and design goals for future SPEs that incor-

5

Chapter 1 Introduction

porate fast PMem storage to overcome these challenges, as outlined in Challenge 3.
To this end, we present Darwin, a novel SPE prototype that tailors its execution

toward the target environment through adaptive storage backends and query com-

pilation. Due to high ingestion rates, a key challenge in SPEs is the management of

large state. The efficiency of inserting, retrieving, and checkpointing data heavily

impacts the overall performance of SPEs. By integrating a PMem-aware state store,

Darwin’s adaptive execution leverages PMem’s high performance while supporting

larger-than-memory state as with traditional storage-based SPE state backends. Our

early results show that this combination achieves an order of magnitude speed-up

over current scale-out systems and matches processing rates of scale-up systems.

The content of Chapter 5 was published at CIDR 2022 [16].

Contribution 4: Implications of PMem research on multi-tier memory.
In Chapter 6, we give an outlook on how PMem research can be transferred to

future multi-tier memory setups by the example of CXL (outlined in Challenge 4).
We discuss how limited hardware availability impacts the performance general-

ization of new designs, how existing CPU components are not adapted towards

different access characteristics, how multi-tier memory setups offer different price-

performance trade-offs, and when explicit memory fences may still be needed. To

support future CXL research in each of these areas, we discuss how our insights

apply to CXL and which problems researchers may encounter along the way. The

content of Chapter 6 was published at the NoDMC workshop 2023 [17].

1.3 Technical Contributions and Impact
Throughout our research towards this thesis, our contributions (Chapters 3 through

Chapter 6) were published.

Journal Papers. Two chapters of this thesis (Chapter 3 and Chapter 4) were

published in a top-tier journal.

» Lawrence Benson, Leon Papke, Tilmann Rabl. PerMA-Bench: Benchmarking

Persistent Memory Access. PVLDB, 15(11): 2463–2476, 2022.

In this publication, the author performed the conceptual work, as well as the

majority of the implementation, analysis, and writing. Leon Papke assisted

with the implementation and writing. Tilmann Rabl guided the conceptual

work as the supervisor and aided with writing.

» Lawrence Benson, Hendrik Makait, Tilmann Rabl. Viper: An Efficient Hybrid

PMem-DRAM Key-Value Store. PVLDB, 14(9): 1544–1556, 2021.

6

https://doi.org/10.14778/3551793.3551807
https://doi.org/10.14778/3551793.3551807
https://doi.org/10.14778/3461535.3461543
https://doi.org/10.14778/3461535.3461543

Technical Contributions and Impact Section 1.3

In this publication, the author performed the conceptual work, as well as

the majority of the implementation, analysis, and writing. Hendrik Makait

assisted with the implementation. Tilmann Rabl guided the conceptual work

as the supervisor and aided with writing.

Conference Papers. Two chapters (Chapter 5 and Chapter 6) were published in

top-tier international and national conferences.

» Lawrence Benson, Tilmann Rabl. Darwin: Scale-In Stream Processing. In

Conference on Innovative Data Systems Research (CIDR), 2022.

In this publication, the author performed the conceptual work, the imple-

mentation, analysis, and the majority of the writing. Tilmann Rabl guided

the conceptual work as the supervisor and aided with writing.

» Lawrence Benson, Marcel Weisgut, Tilmann Rabl. What We Can Learn from

Persistent Memory for CXL. In Datenbanksysteme für Business, Technologie

und Web (BTW), 2023.

In this publication, the author performed the conceptual work, the analysis,

and the majority of the writing. Marcel Weisgut assisted with the conceptual

CXL parts as well as with writing. Tilmann Rabl guided the conceptual work

as the supervisor and aided with writing.

Open Source Contributions. To allow for reproducibility and comparison, we

have made the code of PerMA-Bench and Viper available. We also contributed

patches to existing large open-source projects.

» PerMA-Bench Code: github.com/hpides/perma-bench

This repository contains the source code and results for our benchmarking

framework PerMA-Bench (Chaper 3). Made available under MIT License. The

PerMA-Bench code is used as the foundation of an ongoing benchmarking

project by other members of the author’s research group.

» Viper Code: github.com/hpides/viper

This repository contains the source code and results for our PMem-ware key-

value store Viper (Chapter 4). Made available under MIT License. Based on

our available code, Viper has been used as an evaluation baseline in various

papers succeeding our work (e.g. [54, 140, 142]).

» Added aNUMA feature to Intel’s PersistentMemoryDevelopment Kit (PMDK).

Pull Request: github.com/pmem/pmdk/pull/5067

7

https://www.cidrdb.org/cidr2022/papers/p34-benson.pdf
https://doi.org/10.18420/BTW2023-48
https://doi.org/10.18420/BTW2023-48
http://github.com/hpides/perma-bench
http://github.com/hpides/viper
http://github.com/pmem/pmdk/pull/5067

Chapter 1 Introduction

» Submitted multiple patches to the LLVM compiler for more efficient vector

instruction selection.

Commits: github.com/llvm/llvm-project/commits?author=lawben&since=

2023-01-01

1.4 Additional Contributions
In this section, we list additional publications that were made during the course of

this thesis, but which are not part of it.

First Authorship. The author also explored SIMD vectorization in databases

leveraging compilers’ internal vector representations.

» Lawrence Benson, Richard Ebeling, Tilmann Rabl. Evaluating SIMD Compiler-

Intrinsics for Database Systems. In Workshop on Accelerating Analytics and

Data Management Systems (ADMS), 2023.

Source code: github.com/hpides/autovec-db

Student Supervision. During his PhD at HPI, the author supervised and worked

with various students, which led to four publications at top-tier conferences and

journals (in chronological order).

» Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, Tilmann Rabl. Maxi-

mizing Persistent Memory Bandwidth Utilization for OLAP Workloads. In

Proceedings of the International Conference on Management of Data (SIG-

MOD), 2021.

Source code: github.com/hpides/pmem-olap

» Maximilian Böther, Otto Kißig, Lawrence Benson, Tilmann Rabl. Drop It In

Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Replacement

for NVMe SSDs. In Proceedings of the International Workshop on Data

Management on New Hardware (DaMoN), 2021.

Source code: github.com/hpides/pmem-nvme-dropin

» Tobias Maltenberger, Till Lehmann, Lawrence Benson, Tilmann Rabl. Evalu-

ating In-Memory Hash Joins on Persistent Memory. In Proceedings of the

International Conference on Extending Database Technology (EDBT), 2022.

» Maximilian Böther, Lawrence Benson, Ana Klimovic, Tilmann Rabl. Analyzing

Vectorized Hash Tables Across CPU Architectures. PVLDB, 16(11): 2755 -

2768, 2023.

Source code: github.com/hpides/vectorized-hash-tables

8

http://github.com/llvm/llvm-project/commits?author=lawben&since=2023-01-01
http://github.com/llvm/llvm-project/commits?author=lawben&since=2023-01-01
https://ceur-ws.org/Vol-3462/ADMS5.pdf
https://ceur-ws.org/Vol-3462/ADMS5.pdf
http://github.com/hpides/autovec-db
https://doi.org/10.1145/3448016.3457292
https://doi.org/10.1145/3448016.3457292
http://github.com/hpides/pmem-olap
https://doi.org/10.1145/3465998.3466010
https://doi.org/10.1145/3465998.3466010
https://doi.org/10.1145/3465998.3466010
http://github.com/hpides/pmem-nvme-dropin
https://doi.org/10.48786/edbt.2022.23
https://doi.org/10.48786/edbt.2022.23
https://doi.org/10.14778/3611479.3611485
https://doi.org/10.14778/3611479.3611485
http://github.com/hpides/vectorized-hash-tables

Thesis Outline Section 1.5

Co-Authorship. The author also co-authored the following paper:

» Wang Yue, Lawrence Benson, Tilmann Rabl. Desis: Efficient Window Ag-

gregation in Decentralized Networks. In Proceedings of the International

Conference on Extending Database Technology (EDBT), 2023.

Source code: github.com/wywclmqf/DESengine

1.5 Thesis Outline
The remainder of this thesis is structured as follows.

In Chapter 2, we introduce persistent memory as the key memory technology

on which our contributions are based.

In Chapter 3, we present PerMA-Bench, a configurable benchmark framework

to analyze bandwidth, latency, and operations per second for customizable database-

related PMem access. Based on PerMA-Bench, we evaluate synthetic workloads

and real systems on various PMem server configurations and perform a price-

performance evaluation.

In Chapter 4, we introduce Viper, a hybrid PMem-DRAM key-value store de-

signed for Optane. Based on access pattern microbenchmarks, we propose three

key design choices for building a hybrid key-value store and show how they are

implemented in Viper. We show that our design outperforms existing solutions at

the time.

In Chapter 5, we discuss current challenges around high-performance stream

processing systems. We outline how efficient state management, as a key challenge,

can be improved using our PMem-aware state store Viper in our streaming engine

prototype Darwin.

InChapter 6, we discuss how our findings and insights from PMem research can

be transferred to Compute Express Link. We do this in light of Intel discontinuing

the Optane product line in favor of the emerging CXL interconnect.

In Chapter 7, we summarize this thesis and provide an outlook on how our

work contributes to future research in this area.

9

https://doi.org/10.48786/edbt.2023.52
https://doi.org/10.48786/edbt.2023.52
http://github.com/wywclmqf/DESengine

2 Background

This chapter is an extended version of content published in [14, 15].

2.1 Persistent Memory
In this chapter, we present the necessary background on persistent memory as

the core technology used throughout this thesis. We cover various aspects of

PMem in general and related to Intel’s Optane PMem product line. We first discuss

general PMem classification types (Section 2.1.1), followed by details specific to

Intel’s Optane product (Section 2.1.2). Then, we discuss how data is transferred

between the CPU and PMem in two different API modes (Section 2.1.3) and how

to ensure atomic writes and durability (Section 2.1.4). In Section 2.1.5, we present

programming interfaces and APIs for PMem.

2.1.1 Types

The Storage Networking Industry Association (SNIA) defines persistent memory as

a “storage technology with performance characteristics suitable for a load and store

programming model” [134], i.e., as a technology that is persistent but can be used

like regular memory. In this thesis, we use the term persistent memory or PMem

to describe this technology, but over the years various other names have emerged.

These are, e.g., non-volatile memory (NVM), storage-class memory (SCM), and

non-volatile RAM (NVRAM). Alternative abbreviations for PMem include PMEM,

PM, or PMM. For consistency, we use only PMem.

Large-scale persistent memory is currently based on one of two designs: 3D

XPoint (NVDIMM-P) or DRAM + flash (NVDIMM-N). 3D XPoint, developed by

Intel and Micron, is the underlying technology of Optane [60]. It is the only

publicly available true PMem, in which a single storage medium allows for both

byte-addressability and persistence. DRAM + flash storage designs are employed

in PMem offered by, e.g., HPE [36]. These battery-backed NVDIMM-Ns flush their

state to flash chips on power failure.

According to the JEDEC standards, NVDIMM-Ns are seen as regular DRAMby the

server while NVDIMM-Ps are viewed as separate storage with additional changes

11

Chapter 2 Background

Figure 2.1: Six interleaved Optane DIMMs span a continuous 24 KiB region.

to the DDR4 protocol [72, 73]. Future PMem technology is expected to follow the

NVDIMM-P standard, as this allows for larger capacity and extended functionality,

while NVDIMM-Ns are limited by DRAM [74]. Currently, Optane PMem is the

only available NVDIMM-P implementation. Various other PMem designs have

been announced or are actively developed. These include Nano-RAM [100], phase

change memory [86, 127, 154], resistive RAM [10], and magnetoresistive RAM [48].

While NVDIMM-Ns have been available for many years, they have not achieved

widespread adoption. On the other hand, Optane, as a new technology, has received

a lot of attention in academia and achieved initial adoption in industry, e.g., in SAP

HANA [53]. As NVDIMM-Ns are essentially DRAM and have DRAM performance,

we focus on NVDIMM-Ps in the form of Optane in this thesis.

2.1.2 Intel Optane
Intel Optane is currently the only commercially available NVDIMM-P implementa-

tion. It is based on Intel’s 3D-XPoint media. While parts of the description in this

section apply to all NVDIMM-P-compliant technology, certain aspects are Optane-

specific. In this section, we cover some details of Optane that are not specified for

NVDIMM-Ps and may be different in other implementations.

Interleaving

When installing Optane PMem in a server, users can choose between an interleaved
and non-interleaved setup. With interleaving, data is striped across all available

DIMMs, as shown in Figure 2.1. This setup is similar to RAID 0 for secondary

storage. One stripe is 4 KiB, so in a common setup with six DIMMs, a continuous

12

Persistent Memory Section 2.1

24 KiB chunk of data is spread across all six DIMMs. With this layout, users get

transparent parallelism due to a uniform distribution of data across DIMMs.

Without interleaving, each DIMM covers the continuous memory region given

by its capacity. In this case, the application must handle parallelism for continuous

access, as it is served from a only single DIMM. This layout is beneficial if the

application on top explicitly handles data placement, as it gives developers full

control over data locations.

Access Modes

Optane, in combination with Intel Xeon CPUs, offers two modes to run in, Memory
Mode and App Direct Mode. In Memory Mode, PMem acts as a large volatile memory

extension to regular DRAM. In this mode, memory is split into near and far memory,

where near memory is DRAM and far memory is PMem. Users have no control

over where memory is written to or accessed from, as this is handled by the OS.

The OS treats DRAM as an “L4” cache, to which it first writes all data. Only when

DRAM is full, does it write to PMem. As DRAM acts as a cache in front of PMem,

the total memory capacity of the system is that of all PMem DIMMs without DRAM.

For example, a system with 768 GB PMem and 96 GB DRAM has a total memory

capacity of 768 GB and not 864 GB.

A key advantage of this mode is that legacy applications can use it without

any code modification, as all memory is exposed as DRAM with a higher capacity.

However, persistence is not guaranteed in this mode, i.e., users must treat all

memory as volatile. Additionally, as DRAM acts as a cache, an L3 cache miss first

results in an “L4” lookup to DRAM, which in turn leads to a PMem lookup on a

miss. This increases latency by an additional DRAM access compared to direct

access to PMem.

In App Direct Mode, memory is split into two explicit regions over which the

developer has full control. The key advantage of this mode is that persistence is

guaranteed if used correctly. However, existing applications must be adapted to

explicitly access PMem. As memory is split into two regions, the system’s capacity

is combined, i.e., to 864 GB in the example above. As this mode offers more control

as well as persistence, we focus on it in this thesis. The remainder of this section

assumes that we run PMem in App Direct Mode.

Access Granularity

The internal physical media access size of Optane is 256 bytes. Conceptually, this

is similar to a block device with a, e.g., 4 KiB page size. It is possible to load and

13

Chapter 2 Background

100 Series 200 Series 300 Series
read 1.75 GB/s 2.03 GB/s 5.28 GB/s

write 0.58 GB/s 0.79 GB/s 1.63 GB/s

Table 2.1:Maximum per-DIMM Optane performance per generation

for random 64-byte reads and writes, as reported by Intel.

store individual 64-byte cache lines but this results in read and write amplification

in the Optane DIMM. Most systems designed for Optane optimize for this 256-byte

granularity, as access at this size yields the best performance. To mitigate write

amplification, Optane employs a write combining buffer that tries to combine four

adjacent 64-byte cache lines into a single 256-byte write.

Optane Generations

The Optane PMem product is available in three generations, the 100 Series (code

name Apache Pass), the 200 Series (Barlow Pass), and the 300 Series (Crow Pass).

All generations offer DIMMs with 128, 256, and 512 GB capacity. Each generation

requires a new corresponding Intel Xeon CPU generation, i.e., the 100 Series requires

at least a 2
nd

generation Xeon CPU (Cascade Lake), the 200 Series requires a 3
rd

generation Xeon CPU (Ice Lake), and the 300 Series requires a 4
th
generation Xeon

CPU (Sapphire Rapids). Key differences between generations are that the 200 Series

comes with eADR support (see Section 2.1.4) compared to ADR in the 100 Series

and that the 300 Series supports Compute Express Link (CXL) 1.1.

As the Optane generations are tied to CPU generations, the maximum PMem

capacity per generation is also tied to the CPU. With Cascade Lake, a single CPU

has six memory channels, supporting a maximum of 6 × 512 GB = 3072 GB. Ice

Lake and Sapphire Rapids CPUs have eight channels, allowing for a total of 4096

GB per socket.

As Optane and DRAM share the same memory bus, the bus speed must be set

equally. Optane is only supported in a 2 DPC (DIMM per channel) setup with one

DRAM DIMM per Optane DIMM. Using Optane slightly decreases the maximum

bus speed from a DRAM-only 1 DPC setup. For 100 Series Optane and Cascade Lake,

2 DPC is limited to 2666 MT/s [60, 64], compared to 2933 MT/s for a DRAM-only 1

DPC configuration. For 200 Series Optane and Ice Lake CPUs, the limit is 3200 MT/s

for both 1 and 2 DPC [61, 65]. The third Optane generation and Sapphire Rapids

CPUs support up to 4400 MT/s [66, 67] for 2 DPC, which is lower than Sapphire

Rapid’s 4800 MT/s limit for 1 DPC.

14

Persistent Memory Section 2.1

We perform an extensive evaluation of 100 and 200 Series Optane in Chapter 3,

but this does not include the recent 300 Series. To provide a small performance

overview, we show the 64-byte random access performance per DIMM as reported

by Intel [60, 61, 66] in Table 2.1. In it, we see that each new generation brings a

performance boost, especially from the 200 to 300 Series. Nominally, a common 100

Series setup with six Optane DIMMs supports 6 × 1.75 GB/s = 10.5 GB/s random

reads and 3.48 GB/s random writes. A 200 Series setup with eight DIMMs can

achieve up to 8 × 2.03 GB/s = 16.24 GB/s random reads and 6.32 GB/s random writes

and a 300 Series setup can achieve up to 8 × 5.28 GB/s = 42.24 GB/s random reads

and 13.04 GB/s random writes. Due to Intel discontinuing Optane, we were not

able to verify these numbers for the 300 Series. For the 100 and 200 Series, the

performance aligns with our results as shown in Chapter 3.

Optane in the Storage Hierarchy

To position Optane in the storage hierarchy, we briefly compare it to DRAM and

SSDs. Due to widely different performance characteristics across devices, memo-

ry/storage technologies, and generations of the same technology, we provide only

a rough performance outline of Optane in the “storage jungle” [56]. A single DDR-5

DRAM DIMM with 4800 MT/s achieves ~38 GB/s read bandwidth, which is 7×
higher than the Optane 300 Series. Depending on the generation, a single Optane

DIMM achieves comparable bandwidth to modern NVMe SSDs, which can read

and write between 2 and 7 GB/s per device (with 4 KB page granularity). As multi-

ple Optane DIMMs are commonly installed together, the accumulated bandwidth

exceeds a single NVMe SSD. However, recent work shows that multiple NVMe

SSDs combined in a RAID also achieve more than 50 GB/s, which is similar to a

fully-stocked Optane server [50]. While the bandwidth is similar between Optane

and modern NVMe SSDs, a key difference is access latency. Random PMem access

is in the order of hundreds of nanoseconds, while SSDs require tens or hundreds of

microseconds, i.e., one order of magnitude difference [50]. Thus, the potential of

Optane over SSDs is greatest when used for workloads requiring low latency.

2.1.3 Accessing Persistent Memory
The Storage Networking Industry Association (SNIA) defines anNVMProgramming

Model (NPM) [134], which specifies a unified access model for PMem. This model

allows for the integration of a wide range of storage technologies, beyond only

Intel’s Optane product. We show the two PMem access modes of this model in

Figure 2.2. Applications either access PMem via regular filesystem interfaces (shown

15

Chapter 2 Background

Figure 2.2: Standard PMem access modes.

on the left side) using calls such as fopen, fread, fsync, or they access PMem via

memory-mapping (shown on the right side) using calls such as mmap, and load and

store instructions.

The filesystem interface allows existing applications to use PMem as a drop-in

replacement for common disk-based interaction, while the second mode allows

applications to use PMem identically to DRAM. The programming model allows

for memory mapping of files, i.e., combining both modes. In this case, files are used

to logically structure raw memory chunks but PMem is accessed directly without

the overhead of regular file I/O.

File I/O

To use PMem as a drop-in replacement for secondary storage, users can access it

via a regular filesystem. In this case, PMem is exposed as a block device, and a

filesystem, e.g., ext4 or xfs, is created on top of it. From a user’s perspective, this is

identical to a regular disk-based filesystem.

Regular file I/O commonly goes through the operating system’s page cache, i.e., a

copy of the storage content is kept in DRAM for faster access and modification. Due

to PMem’s byte-addressability, this copy is not necessary but it consumes DRAM

capacity. To avoid this copy, PMem-aware filesystems offer direct access (DAX). In
a DAX filesystem, data is read directly from the PMem DIMM and modifications

are written directly to it without an intermediate copy. However, due to the block-

device characteristics, all access occurs at page granularity, i.e., 4 KiB. This does

not leverage the byte-addressability of PMem and causes high read and write

amplification for small reads and writes. To better utilize PMem bandwidth, the

preferred access mode is via memory mapping and load/store semantics, which we

cover in the following.

In previous work, we show that access via the filesystem has a 5–10% overhead

compared to direct memory access to and from a character device due to memory

zeroing on page faults [31]. Directly mapping memory from the character device

16

Persistent Memory Section 2.1

Figure 2.3:Writing to NVDIMM-Ps from the CPU.

avoids this overhead but access to the raw device requires full control of it without

the advantages of a filesystem, e.g., structuring data or fine-grained access control.

Load/Store

To leverage the byte-addressability of PMem, developers can memory-map PMem

directly from the PMem DIMM into their application’s virtual address space. To

do this, they issue an mmap call to the PMem-aware DAX filesystem or the PMem

character device directly. Due to DAX, every byte that is accessed in the memory-

mapped virtual address range is read and written directly from and to PMem via

regular CPU load and store instructions, allowing for access at cache line granularity.

This enables developers to create complex data structures in PMem as in DRAM.

For data modifications in DRAM, in most cases, it is not important when and

how data is actually moved from the CPU to memory, as an application crash or

power loss results in all data being lost. To ensure persistence with PMem, modified

data in the CPU’s current cache line must be explicitly written back (or flushed) to

PMem, as data in the caches is not necessarily persisted. We outline how data is

moved from the CPU to PMem in Figure 2.3. This model is based on Intel’s Xeon

processors [62] and Optane.

A CPU contains one or more integrated memory controllers (iMCs), which are

directly connected to PMem via memory channels. To write data to PMem, the

CPU must flush cache lines to a write pending queue (WPQ) within an iMC. Once

data is in the WPQ, it is in the Asynchronous DRAM Refresh (ADR) Domain, which

is guaranteed to be persisted, even on power loss. The WPQ then issues the write

to the correct PMem device. On Intel CPUs, available instructions to flush a cache

line are:

» clflush (cache line flush): Flushes the cache line and invalidates it, i.e., the

next access to this cache line must fetch data from PMem. This is mainly a

17

Chapter 2 Background

legacy instruction that should not be used. Instead, developers should use

clwb. clflush can be called via, e.g., _mm_clflush(addr).

» clwb (cache line write back): Flushes the cache line but does not invalidate it,
i.e., data is written to PMem but it still remains valid in the cache hierarchy.

The next access to this cache line can be answered from cache if it was not

evicted otherwise in the meantime. This is the recommended instruction to

write data to PMem. clwb can be called via, e.g., _mm_clwb(addr).

» ntstore (non-temporal store): For data with low or no temporal locality, i.e.,

it will not be accessed in the near future, Intel also offers a non-temporal store.

This completely bypasses the cache hierarchy, offering better performance

than the other instructions, which perform additional cache-related opera-

tions. This instruction is useful, e.g., for large sequential writes or logging.

A non-temporal store can be issued via, e.g., _mm512_stream_si512(desti-
nation, data).

A read request to PMem is posted to a read pending queue (RPQ) at cache line

granularity. Following a request, data is also returned from the DIMM at cache line

granularity, irrespective of the underlying physical granularity, e.g., 256-byte for

Optane. WhileWPQs and RPQs are Intel-specific, they are based on the NVDIMM-P

standard that describes a write buffering mechanism. Future PMem is likely to

work similarly.

Communication via the DRAM memory bus (DDR) is synchronous [75]. This is

not the case for a shared DRAM and PMem memory bus, as PMem is slower than

DRAM. To overcome the varying latency in Optane, Intel uses a modified DDR4

protocol called DDR-T to support asynchronous communication between the WPQ

and Optane. While DRR-T is Optane-specific, synchronous memory buses are a

general problem that vendors need to solve when supporting different memory

types. Compute Express Link (CXL) is emerging as an industry-wide solution to

handle larger memory capacity with slower access [30]. We discuss the implications

of PMem research for future CXL-aware designs in Chapter 6.

2.1.4 Atomicity and Durability
An important distinction between memory-mapped files on disk and PMem is that

traditionally data is copied to a page cache in DRAM, which is then modified and

flushed back. When memory mapping PMem, it is accessed directly (via DAX) and

not copied to a DRAM page cache. Any modification to the data, if flushed correctly,

is directly performed in persistent memory. This changes the failure granularity of

18

Persistent Memory Section 2.1

data modification compared to file-backed memory. For traditional files, developers

must consider various failure cases, such as torn writes, but at the granularity of,

e.g., a 4 KiB page write at an explicit point in the application. For PMem, developers

must explicitly control data persistence and handle low-level crash consistency for

every write to PMem.

As data in the caches is not persisted, developers must issue explicit flush in-

structions (see Section 2.1.3). However, in addition to explicit flushes, data might be

randomly evicted from the cache, resulting in unexpected data persistence. Even

if the developer does not issue an explicit flush, some data modifications might

be written to PMem. As current CPUs provide only 8-byte atomic writes, random

64-byte cache line evictions may cause an inconsistent state after a crash for modi-

fications larger than 8 byte. Thus, programmers must carefully design fine-grained

PMem data access to ensure application correctness.

Additionally, programmers have to ensure correct store ordering. Modern com-

pilers and CPUs may re-order instructions to improve performance, e.g., through

better pipelining. However, this may lead to re-ordering of persist instructions,

resulting in correctness bugs [99]. We show an example of this in the code below.

void insert_item(vector& vec, int x) {
vec[vec.size] = x;
// Flush cache line to PMem
_mm_clwb(&vec[vec.size]);
vec.size++;

}

In his example, we append an integer to a vector and then increase the current

size of the vector. Depending on the compiler, this may first store a copy of the size

in a register 𝑟 , update the vector’s size, then write x to the position stored in 𝑟 , and

finally flush it. For data in DRAM, this execution order makes no difference to the

user as all data is lost after a crash. For data in PMem, this order may not be correct.

Due to out-of-order execution in the CPU, the change to the size may be observed

by later instructions, which then assume that data has been written and, e.g., report

a successful operation to the user. However, if the application crashes before 𝑥 was

actually flushed to PMem, the execution was not successful. When restarting after

the crash, x cannot be recovered and the application is in an inconsistent state.

To avoid such reordering, programmers must explicitly issue memory fences, e.g.,

via an sfence instruction on x86 [63]. This ensures that all modifications issued

before the fence are globally visible before later modifications become visible, i.e.,

they can be observed by other threads. A common pattern when programming for

19

Chapter 2 Background

PMem is to i) perform the data modification, ii) flush it, and iii) perform a store
fence to ensure that no later instruction is executed before the flush is completed.

After the store fence, iv) metadata is updated to indicate the modification’s validity.

In our example, this would be done as shown below.

void insert_item(vector& vec, int x) {
vec[vec.size] = x; // i) Modify
_mm_clwb(&vec[vec.size]); // ii) Flush
// Ensure that vec.size
// is not modified before
// x is flushed
_mm_sfence(); // iii) Fence
vec.size++; // iv) Metadata

}

Correctly moving data from CPU caches to PMem burdens programmers due

to these correctness issues. It also incurs performance penalties due to additional

CPU instructions. However, solutions exist to mitigate the correctness issues and

performance penalties. Intel’s 3
rd
Generation Xeon processors (Ice Lake) introduce

an enhanced ADR (eADR) [61]. This includes all caches in the ADR, i.e., ensuring

the persistence of all cached data in case of power loss (see Figure 2.3). This new

design removes the necessity of explicit flushing. However, it still requires store

fences for correct ordering and data can still be randomly and/or partially evicted,

requiring careful data structure designs. A recent study finds that missing flushes

are a common mistake in various PMem applications and libraries [116]. An eADR

protects the user from this class of bugs.

2.1.5 Programming Interfaces and APIs
As PMem is commonly mapped into the application’s virtual address space, devel-

opers can interact with it the same way they interact with DRAM. However, we

show that they must pay attention to flushing, store ordering via fences, and crash

consistency to write correct applications. This complexity results in numerous bugs

that are hard to detect [116]. To aid developers with PMem programming, various

PMem libraries have been created under the Persistent Memory Development Kit
1

(PMDK) [124]. These contain, among others, general purpose utilities for persistent

memory development (libpmem
2
), transactional objects and memory allocations

1 Due to Intel discontinuing Optane, most projects in PMDK have been deprecated as of 2023.

2 https://pmem.io/pmdk/libpmem/

20

https://pmem.io/pmdk/libpmem/

Persistent Memory Section 2.1

(libpmemobj
3
), C++ bindings (libpmemobj-cpp

4
), or logging utilities (libpmemlog

5
).

To have more explicit control over PMem access, we do not rely on PMDK libraries

in this thesis.

3 https://pmem.io/pmdk/libpmemobj/

4 https://pmem.io/libpmemobj-cpp/

5 https://pmem.io/pmdk/libpmemlog/

21

https://pmem.io/pmdk/libpmemobj/
https://pmem.io/libpmemobj-cpp/
https://pmem.io/pmdk/libpmemlog/

3 Benchmarking Persis-
tent Memory Access

The majority of this chapter has been published in [15].

3.1 Introduction

Both research and industry have awaited the arrival of persistent memory (PMem)

as a new layer in the storage hierarchy for many years. PMem promises byte-

addressability and persistency at DRAM-like speed with SSD-like capacity. These

characteristics have the potential to cause a major performance increase in storage

systems, such as databases and key-value stores. Thus, research on system design

incorporating PMem was published long before real PMem hardware was available,

based on simulations [7, 123, 141]. Now that byte-addressable, persistent memory is

finally available commercially, Intel’s Optane DC Persistent Memory has received

a lot of attention in initial performance evaluations [31, 47, 130, 147]. These

evaluations provide valuable insights into the general performance and unique

characteristics of first-generation Optane.

Research on data structures [25, 97, 101] and storage systems [14, 26, 91] that

incorporate these insights often have to perform additional hardware-specific micro

benchmarks to understand the specific nuanced PMem behavior for their expected

workloads. Initial research shows that Optane’s performance is highly dependent

on the workload with major differences between read and write behavior.

Due to limited availability and high prices, researchers often have access to only

one PMem server. Thus, new systems built for PMem are designed, implemented,

and optimized on a single server with a single combination of PMem, DRAM, and

CPU. However, many factors impact PMem performance that are not yet well

understood, e.g., the DIMMs’ size and power budget or the number of DIMMs in the

server. As PMem is a new technology, it is unclear how well these initial designs

generalize across PMem configurations. On top of various configurations, with

the availability of second-generation Optane, new performance characteristics are

introduced.

Based on the configuration space and workload-tailored micro-benchmarks of

previous work, we identify the need for a comparable workload-driven analy-

sis of PMem. We propose PerMA-Bench, a configurable benchmark framework

23

Chapter 3 Benchmarking Persistent Memory Access

that analyzes the bandwidth, latency, and operations per second for customizable

database-related PMem access. In PerMA-Bench, we pre-define various workloads

that cover the maximum achievable performance of core access patterns (sequen-

tial/random reads/writes), as well as a wide range of realistic, database-related

access patterns, such as updates, lookups, and scans in tree and hash indexes.

These complex patterns include pointer-chasing loads, mixed read/write access,

and hybrid PMem/DRAM access. Additionally, PerMA-Bench allows users to run

custom workloads tailored toward their design choices. With PerMA-Bench, we

propose a tool that provides insight into the performance of PMem at a general and

workload-specific level. Users can explore the performance of new access patterns

but also validate existing designs. Based on these findings, users can validate their

design choices without having to write their own benchmark application and find

areas of improvement in existing designs.

Based on PerMA-Bench, we perform the first extensive evaluation of Optane for

database workloads across various DIMM sizes of the first and second generation.

We compare the performance of all three DIMM sizes of 100 Series Optane and

one DIMM size of the 200 Series. Additionally, we show the impact of varying the

number of DIMMs, DIMM power budgets, and memory bus speeds.

We validate our results with existing implementations and show that they do

not fully utilize the performance improvements across Optane generations. We

show that the choice of persist instruction has a high performance impact and that

avoiding explicit flushes in eADR does not always yield the best results. Based

on our results, we identify and discuss eight aspects that future work should take

into account when designing PMem-aware systems. With the availability of more

PMem hardware, research has to consider more than one setup to achieve general

PMem-optimized designs.

In addition to PMem’s performance, its price-performance is important to de-

termine whether PMem is suitable for users’ needs. In this chapter, we perform a

price-performance comparison of various server configurations. Our comparison

shows that PMem’s price-performance is competitive with that of DRAM and is

often even better. Thus, in addition to providing persistence, PMem can act as a

larger, cost-effective general memory when used correctly. In summary, we make

the following contributions:

1) We propose PerMA-Bench, a configurable benchmark framework to analyze

bandwidth, latency, and operations per second for customizable database-related

PMem access.

2) We perform an extensive evaluation of PMem performance across four PMem

24

Introducing PerMA-Bench Section 3.2

servers and additional per-server configurations to show the impact of individual

server setups on bandwidth utilization and latency.

3) We compare the price-performance for key workloads across all servers and

show that while there are large differences across Optane, PMem is generally

competitive with DRAM.

4) We discuss eight general and implementation-specific aspects that influence

the performance of PMem and need to be taken into account for the design of

future PMem-aware systems.

The remainder of the chapter is structured as follows. In Section 3.2, we introduce

the PerMA-Bench framework. In Section 3.3, we present PerMA-Bench results

on various hardware configurations, which we then use in Section 3.4 to discuss

the price-performance of PMem. Finally, we discuss our findings (Section 3.5) and

related work (Section 3.6), before concluding in Section 3.7.

3.2 Introducing PerMA-Bench
In this section, we introduce PerMA-Bench, a benchmark framework for persis-

tent memory access. When designing new systems or database components, it

is important to know the performance of the underlying memory access. This

understanding allows users to tune their system towards better PMem utilization.

PerMA-Bench supports basic and complex memory access patterns to evaluate the

performance of PMem. Basic access patterns determine the maximum achievable

bandwidth utilization and latency by repeatedly executing the same operation, i.e.,

a simple read or write. Complex patterns allow users to evaluate specific designs

via chained read/write access from/to DRAM and PMem with varying persist in-

structions and access sizes. Based on these complex patterns, users can model,

e.g., new index structure designs and gain insight into their memory performance

before implementing them.

We present the runtime of PerMA-Bench in Section 3.2.1. Then, we present

options for workload customization in Section 3.2.2 and briefly discuss supported

memory store semantics in Section 3.2.3.

3.2.1 Runtime
PerMA-Bench is designed as a standalone benchmark executable. Users interact

with PerMA-Bench via configuration files and command line arguments. Based on

25

Chapter 3 Benchmarking Persistent Memory Access

Figure 3.1: Execution cycle of a benchmark in PerMA-Bench.

these specified configuration parameters, individual benchmarks are created. We

show the execution cycle of PerMA-Bench in Figure 3.1. For each benchmark (BM)

that is created, PerMA-Bench performs four steps.

First, all data files are prepared and filled with random data. The files can be

located in PMem or DRAM to allow for hybrid setups, which are common in current

PMem research. Next, individual work packages are generated, which contain a

pointer for each operation that is to be executed on the data. Work packages of,

e.g., a random read benchmark with 100 operations contain 100 pointers to random

offsets in the data file. For sequential access, packages contain 100 pointers to

contiguous addresses. This allows for execution in a tight loop instead of requiring

logic per benchmark type. For raw performance benchmarks, all work packages

are pre-generated to avoid the overhead of generation during execution.

During the execution, 𝑁 threads are spawned (𝑁 = 4 in Figure 3.1). Each thread

then continuously pulls a new work package from a shared queue and executes the

requested operations on that work package. PerMA-Bench adopts this work package

approach for two reasons. First, to avoid stragglers when statically assigning work

to threads. During our evaluation, we observed that hyperthreading often leads to

very unbalanced execution times, skewing the final results. Second, as the general

concept of work-stealing is employed in many databases exactly to avoid execution

skew, PerMA-Bench represents a common execution model where workers operate

on small work packages, e.g., via morsels [88]. To avoid long-running packages and

the skew this entails, work packages contain 64 MB worth of operations by default,

which execute in less than 100 ms in most cases. All threads are synchronized via a

barrier before the execution starts to ensure concurrent execution.

26

Introducing PerMA-Bench Section 3.2

Listing 3.1: Example config YAML file.

1 hash_index_update:
2 matrix:
3 number_threads: [1, 4, 16]
4 args:
5 custom_ops: "r_256 ,w_64_cache_128 ,w_64_cache_ -128"
6 total_memory_range: 10G
7 number_operations: 100000000

We find that results are not impacted by a warm-up phase within workloads, as

they exceed cache and queue sizes. However, as pre-faulting pages before writing

to them avoids kernel page zeroing during execution [68], we provide a “warm-up”

pre-fault flag.

After all work packages have been processed, PerMA-Bench collects the results

of all threads to calculate the final benchmark results. PerMA-Bench determines

the total execution time as the time between all threads’ earliest begin timestamp

and latest end timestamp. This captures the entire execution duration but may

underestimate the actual performance slightly, as some threads are already idle

while others are finalizing their work. However, in PerMA-Bench, we perform

workload-driven performance evaluation and from a higher-level perspective, this

approach captures the total time it takes to complete a given workload. Based on

the total number of processed bytes or operations and the total execution time,

PerMA-Bench calculates the overall throughput in GB/s or operations/s. If specified

by the user, PerMA-Bench also samples the latency of individual operations. The

sampled values are added to a histogram and presented in the form of minimum,

maximum, average, and multiple percentile latencies.

3.2.2 CustomWorkloads and Configuration

Besides the pre-defined workloads, custom benchmarks can be configured via YAML

files and command line arguments. In this section, we present configuration options

provided by PerMA-Bench with which users can express their specific workloads’

access patterns.

Configuration Files. Benchmarks in PerMA-Bench are configured via YAML

files. This format allows users to specify workloads manually and programmatically.

We show an example configuration in Listing 3.1. Each configuration file consists

of two main parts, the matrix arguments and the general arguments. The matrix

27

Chapter 3 Benchmarking Persistent Memory Access

block (Lines 2–3) describes which dimensions should be evaluated in the benchmark.

Each matrix argument is provided as a list, from which PerMA-Bench creates a

benchmark for each combination in the cross product, i.e., three benchmarks in this

example. The args block (Lines 4–7) describes which general arguments should

be used for every combination. In this example, we configure a hash index update

workload and evaluate it for 1, 4, and 16 threads.

Custom Operations. In Line 5, we show the definition of a custom operation.

These model complex, pointer-chasing memory access patterns instead of simple,

independent reads or writes. They are created in a chain in which each operation

𝑜𝑝 is responsible for calling the next operation 𝑜𝑝′ once complete. When 𝑜𝑝 has

read the random data 𝑑 , it passes 𝑑 to 𝑜𝑝′, which then determines the next address

based on 𝑑 . By requiring data from 𝑜𝑝 in 𝑜𝑝′, PerMA-Bench ensures that 𝑜𝑝′ is not
executed before 𝑜𝑝 was completed.

In the example, PerMA-Bench reads 256 Byte (r_256), e.g., a hash bucket, at a

random location 𝑟𝑎 within the allocated data range. Then, two 64 Byte Cache write
instructions (w_64_cache) are executed. The first is performed with an offset of 128

Byte (_128 = 𝑟𝑎 + 128), e.g., to store data in a hash bucket. The next write operation

jumps back 128 Byte to the start of the bucket (_-128 = 𝑟𝑎) to update metadata. This

pattern of storing data in a node and updating metadata afterwards is common in

PMem data structures [14, 97, 101, 123]. As 64 Byte cache line flushes are combined

to 256 Byte in Optane, it is important to model adjacent writes correctly instead

of simulating them with writes to the same cache line while supporting different

persist instructions. Varying these sizes also gives users insight into the impact

of prefetching in PMem. Additionally, PerMA-Bench supports mixing DRAM and

PMem for hybrid access, as used, e.g., in PMem B-Trees [25, 97, 123, 148].

Benchmark Parameters. PerMA-Bench currently offers 19 configuration pa-

rameters that allow users to define a wide range of individual benchmarks without

having to write C++ code for each of them. Users can specify, e.g., PMem/DRAM

memory ranges, access size, sequential/random execution, number of partitions

and threads (for data parallelism), custom operations, work package size, runtime,

and file pre-faulting.

Other Features. PerMA-Bench supports running different workloads as task-

parallel benchmarks. Concurrent workloadsmight impact each other as one benefits

from caching, while the other fills the cache with unwanted data. Users can also

specify NUMA-aware execution of benchmarks on far or near CPUs to explore how

data placement impacts their workloads and whether NUMA must be considered

in their design. PerMA-Bench additionally allows users to run all benchmarks in

DRAM as a performance reference.

28

PerMA-Bench Results Section 3.3

3.2.3 Persist Instructions

PerMA-Bench supports four persist instructions, Cache, CacheInvalidate, NoCache,
and None. Cache represents a temporal store (clwb), CacheInvalidate represents a
temporal store that invalidates the cache line (clflushopt), NoCache represents
a non-temporal store (ntstore), and None performs no explicit flush instruction.

Temporal refers to the inclusion of data in the cache hierarchy with the assump-

tion of future access, i.e., temporal locality is likely. When temporal locality is

unlikely, non-temporal instructions can bypass the cache completely, avoiding

cache pollution. Not explicitly flushing is useful when persistence is not required,

e.g., when storing intermediate results in PMem or when eADR ensures persistence.

For Cache, CacheInvalidate, and NoCache, we add a store fence (sfence) afterwards
to guarantee correct write ordering. PerMA-Bench uses Intel’s AVX512 extension

to write an entire cache line, i.e., 64 Byte or 512 Bits, in one instruction using

SIMD-registers [63].

3.3 PerMA-Bench Results

In this section, we present the results of various PerMA-Bench workloads on

multiple PMem server configurations. Our results give insight into both raw and

workload-specific PMem performance to better understand PMem’s use in database-

inspired workloads. We evaluate various configurations to show how comparable

previous results are across PMem setups, as they are often run on only one configura-

tion, e.g., on one DIMM size or with a partially stocked server. These configurations

allow us to draw more general conclusions about PMem as well as provide insight

into how previously published systems and results apply to other setups.

We describe our evaluation servers in Section 3.3.1. We then show the bandwidth

and latency results of PerMA-Bench’s raw performance workloads in Section 3.3.2

and Section 3.3.3 to gain an understanding of the maximum performance of cur-

rent PMem hardware. In Section 3.3.4, we discuss the results of database-related

workloads and index structures to gain insight into the performance of PMem for

more complex access patterns in actual systems and implementations. Finally, we

investigate the impact of configurations affecting a single server in Section 3.3.5, i.e.,

by varying the number of DIMMs or the memory bus speed, as well as by disabling

the prefetcher.

29

Chapter 3 Benchmarking Persistent Memory Access

Table 3.1: Evaluated servers (single socket). Apache/Barlow refer to the code names of

100/200 Series Optane. All CPUs are Intel Xeon, all PMem is Optane.

Name (Plot Label) CPU PMem DRAM OS

Apache-128
(A-128)

Cascade Lake

18 Cores (2.7 GHz)

6x 128 GB 100 Series

@ 2666 MT/s | 15 Watt

6x 16 GB

Ubuntu 20.04

(5.4 kernel)

Apache-256
(A-256)

Cascade Lake

18 Cores (2.6 GHz)

6x 256 GB 100 Series

@ 2666 MT/s | 18 Watt

6x 16 GB

Ubuntu 20.04

(5.4 kernel)

Apache-512
(A-512)

Cascade Lake

24 Cores (2.4 GHz)

6x 512 GB 100 Series

@ 2666 MT/s | 15 Watt

6x 64 GB

Ubuntu 20.04

(5.4 kernel)

Barlow-256
(B-256/B-D)

Ice Lake

32 Cores (2.2 GHz)

8x 256 GB 200 Series

@ 3200 MT/s | 15 Watt

8x 32 GB

Ubuntu 20.04

(5.4 kernel)

3.3.1 Setup And Methodology

We perform our evaluation on the four server configurations presented in Table 3.1.

We refer to the servers as named in the table or via their label, e.g., Apache-128

or A-128. Apache Pass is the code name for the first generation/100 Series Optane

DIMMs. Barlow Pass is the code name for the second generation/200 Series Optane

DIMMs. All servers are equipped with Optane DC Persistent Memory DIMMs. All

Optane DIMMs are configured interleaved, i.e., striped in 4 KB blocks and accessed

in App Direct mode. All measurements are performed on a single socket. To avoid

measuring zeroing of requested pages by the kernel, files are pre-allocated and

pre-faulted by default before running the benchmark, as recommended [68]. Unless

stated otherwise, we generate a fixed amount of random data for each benchmark,

depending on the benchmark configuration. In all experiments, we use 1 GB = 2
30

Byte.

The A-256 server is configured with an 18 Watt average power budget per DIMM,

the other 100 Series servers are configured to 15 W. While Optane allows the power

budget to be set from 12 to 15 W (A-128, B-256) or 18 W (A-256/512), it is set by the

vendor on the evaluated servers and cannot be reconfigured. Analyzing the power

range allows us to show that even within the same generation, server configuration

has a large performance impact.

When drawing performance conclusions, we also consider official performance

numbers provided by Intel [60, 61] and previously reported numbers in research [31,

47, 71, 130, 147]. To provide a reference to well-known performance numbers, we

also evaluate all experiments in DRAM. We show the results of the DRAM runs on

Barlow-256 (shown as B-D in the plots). The DRAM performance in the Apache

30

PerMA-Bench Results Section 3.3

1 4 8 16 32

of Threads

0

10

20

30

40

50

60

T
h
r
o
u
g
h
p
u
t
(
G
B
/
s
)

157

a) Sequential Reads

64 256

Access Size in Byte

0

10

20

30

40
95

128b) Random Reads

A-128 A-256 A-512 B-256 B-D

Figure 3.2: Sequential and random read bandwidth.

a) Fixed to 4096 Byte Access | b) Fixed to 16 Threads

servers is lower, so we omit them for space reasons. The full results can be found

in our repository
6
.

3.3.2 Raw Performance Workloads – Bandwidth
In this section, we present the bandwidth results of PerMA-Bench’s raw perfor-

mance workloads. We investigate the bandwidth utilization of all servers for

sequential and random reads and writes. As the first part of our evaluation, these

workloads provide insight into which performance can be achieved with current

PMem hardware. Based on this knowledge, users can make decisions about the

feasibility of PMem-specific implementations and their expected performance range

in bandwidth-heavy applications.

Sequential Reads

We first discuss the throughput of sequential reads across all servers, as they

are a core database access pattern. In this benchmark, we perform a sequential

read workload on 50 GiB of randomly generated data with 4096 Byte access size

and a varying number of threads. We show our results in Figure 3.2a. Within

the first generation, we observe a difference of up to 44%, ranging from 29 to

42 GB/s. According to the official product sheet, A-128 and A-256 have the same

read bandwidth under equal power budgets [60]. So the 24% difference between

A-512 and A-128 is based on the DIMMs, while the additional 15% improvement

from A-128 to A-256 is based on the higher power budget.

B-256 achieves ~40% higher bandwidth than its first-generation counterpart

A-256 with 58 GB/s and a 60% improvement over A-128. B-256 is stocked with

6 https://github.com/hpides/perma-bench

31

https://github.com/hpides/perma-bench

Chapter 3 Benchmarking Persistent Memory Access

8 DIMMs per socket instead of 6 DIMMs as in the 100 Series, leading to a 33%

higher expected performance. Beyond this, we observe only a small improvement

compared to the 18 W budget in A-256. But compared to A-128, which has the same

read bandwidth as A-256 under equal power budgets [60], we see an additional 30%

improvement. So for common 15 W setups, there is a notable performance increase

between generations.

Our results show higher variance in throughput once hyperthreading is used and

PMem limits are reached. This is observable for A-128 and A-256 with 32 threads,

as both have only 18 physical cores. A-512 is more consistent, as it has 24 cores and

B-256 even improves until 32 threads, which is the number of its physical cores. To

achieve stable performance across servers, it is important to not exceed the number

of physical cores when scanning data.

As a reference, B-DRAM’s bandwidth reaches 98/145/157 GB/s for 8/16/32 threads,

which is still significantly higher than PMem’s. In the second generation of Optane

DIMMs, the gap between PMem and DRAM even increases, from 2.3 to 2.7×.
So while the bandwidth improved, there is still a clear advantage for DRAM in

bandwidth-heavy applications. On the other hand, future systems must be able to

process ~60 GB/s of data when reading from PMem, which is amajor challengewhen

considering the cost of, e.g., random access data structures used in aggregations

or joins. Thus, for most data-intensive applications, the bandwidth of sequentially

accessing data stored in PMem is sufficient and does not constitute a bottleneck,

unlike alternative secondary storage [31].

Random Reads

As indexes are core database components and essential to query performance, we

investigate an index-inspired workload consisting of small, random, read-only

operations, as commonly performed in hash or tree indexes. The bandwidth for

uniform 64 and 256 Byte access across 10 GiB of random data is shown in Figure 3.2b.

These access sizes represent the internal access granularity of Optane as well as

standard cache-line-sized reads.

When considering PMem as random access memory as seen by the CPU, we

see that it cannot achieve the same random to sequential ratio as DRAM. For 64

Byte, B-DRAM achieves 60% of the peak sequential performance, while the PMem

servers achieve only 25%. Using the access granularity of Optane at 256 Byte, PMem

achieves 67 – 92% and B-DRAM achieves 81%. Configurations with lower sequential

performance achieve higher percentages in random access, reducing the gap from

40 to 20%. The second generation improves by 40% over A-256 and 80% over A-128.

32

PerMA-Bench Results Section 3.3

1 4 8 16 32

of Threads

0

5

10

15

20

25

T
h
r
o
u
g
h
p
u
t
(
G
B
/
s
)

84

a) Thread Count

64 256 512 1024

Access Size in Byte

0

5

10

15

20

25
73

b) Access Size

A-128 A-256 A-512 B-256 B-D

Figure 3.3: Thread and access size impact on sequential writes. a) Fixed to 512 Byte Access
| b) Fixed to 16 Threads

Similar to sequential access, we see little improvement over the higher-powered

DIMMs but large gains compared to the lower wattage DIMMs.

When designing for PMem, it is important to keep the read amplification of small

reads and the access granularity in mind, as 256 Byte access achieves more than

two-thirds of the peak sequential performance. Compared to volatile DRAM, the

performance is still significantly lower. But for applications that need fast access to

small persistent records, e.g., point lookups in a key-value store or persistent index

operations, 17+ GB/s of random 64 Byte access and 32+ GB/s of random 256 Byte

access allow future systems to re-think the cost of persistence, especially when

considering other bottlenecks such as network or alternative secondary storage.

Sequential Writes

Inspired by logging workloads in databases, we show a sequential write benchmark

of 30 GiB in Figure 3.3. We investigate varying the number of threads and write

size. We use NoCache writes, as logged data does not require temporal locality.

In Figure 3.3a, we evaluate the bandwidth for 512 Byte sequential writes. Within

the 100 Series, we observe a large difference between A-128/512 and A-256. A-

128/512 achieve around 12 GB/s sequential write bandwidth, as shown in previous

work [31, 130, 147]. A-256, on the other hand, achieves close to 17 GB/s, due to

the higher power budget. This is 40% higher than previously published results for

100 Series Optane. We verify this bandwidth utilization in VTune to confirm that

there is a significant difference even within the first generation DIMMs. Thus, it

is highly beneficial to configure PMem with a higher power budget of 18 W for

write-heavy applications.

We observe a large improvement from the regular-powered 100 to the 200 Series.

At its peak, B-256 achieves 21.6 GB/s, which is 75% higher than A-128/512 and

33

Chapter 3 Benchmarking Persistent Memory Access

NoCache None
0

5

10

15

20

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

84 85

a) Seq. Writes

NoCache Cache CacheInv None
0

2

4

6 12 8 8

65b) Random Writes

A-128 A-256 A-512 B-256 B-D

Figure 3.4: Impact of persist instruction on write bandwidth.

32 Threads | a) Sequential 512 Byte Write | b) Random 64 Byte Write

goes beyond the expected 33% increase due to more DIMMs. The improvement for

sequential writes is also higher than that of sequential reads. However, compared to

the high-powered A-256, we observe only a 30% improvement, i.e., none beyond the

extra DIMMs. Nonetheless, for common configurations used in previous research,

there is a large increase that encourages utilizing PMem even more for sequential

writes, e.g., when logging or using log-based storage systems. When persistence is

not needed, PMem performs significantly worse than DRAM, which achieves more

than 40/80 GiB/s for 16/32 threads, i.e., a difference of 4×.
When scaling the access size for 16 threads, as shown in Figure 3.3b, we observe

that all servers require at least 256 Byte to achieve peak bandwidth. However, for

A-256 and B-256, this is more important than for A-128/512. The latter two servers

perform close to their maximumwith 128 Byte, while the other two servers improve

by at least 70% from 128 to 256 Byte. B-256 even improves from 256 Byte to 512

Byte, before dropping again slightly for larger sizes.

We also observe that all configurations decrease slightly when increasing the

number of threads beyond a certain point. This point is at 16 threads for A-256

and B-256, while it is at 8 for A-128 and A-512. The ideal configuration of threads

and access size depends on the server and differs across generations. While all

100 Series servers in our evaluation peak at 512 Byte access, B-256 peaks with 256

Byte access and 32 threads. These slight performance differences across all servers

indicate that fine-tuning for the individual server yields higher performance and

cannot be easily generalized.

Persist Instruction

We evaluate the impact of different persist instructions on the bandwidth for

sequentially writing 30 GiB and randomly writing 10 GiB. The results are shown in

Figure 3.4.

34

PerMA-Bench Results Section 3.3

With Ice Lake CPUs, Intel offers persistence for all data in the eADR (see Sec-

tion 2.1.4), making explicit flushing optional. However, we see that for sequential

write access, not flushing data strongly decreases bandwidth utilization by up to 4×
compared to explicit stores. Randomly evicted cache lines impair write-combining

within the DIMMs, resulting in random-access-like write performance. Thus, ex-

plicitly flushing is beneficial for sequential writes, even with the second generation

server and eADR. For B-DRAM, on the other hand, there is no difference between

both options, as there is no write amplification when randomly evicting data from

cache.

For random 64 Byte writes, we evaluate all four persist options, i.e., NoCache,
Cache, CacheInvalidate, and None, as shown in Figure 3.4b. Explicitly bypassing

the cache via non-temporal stores achieves the highest bandwidth in all servers.

Non-temporal stores also surpass explicit flushing in DRAM, which shows that

there is a ~25% overhead of passing stores through the cache hierarchy.

Issuing no flush (None) is only marginally better than explicit temporal stores

for Apache servers, but nearly 2× better for B-256. Thus, in eADR servers, users

benefit from reduced code complexity and higher bandwidth when not explicitly

flushing. Based on the different performance characteristics of flushes in the 100

and 200 Series, future work should re-evaluate flushes in existing PMem-optimized

index structures. Significant work has been done to reduce the number of flushes

and to decide which instructions to use [97, 101, 123, 148, 156], but it is unclear

whether the choices apply to future Optane or are tailored only towards 100 Series.

3.3.3 Raw Performance Workloads - Latency

In this section, we evaluate the latency of raw PMem access across all servers.

Understanding latency allows users to evaluate the feasibility of PMem-specific

implementations in latency-critical applications and gain insight into the expected

performance.

Operation Latency

In Figure 3.5, we show the average latency of five operations in PMem: a single

256 Byte read, and four variants of a 256 Byte read followed by a 256 Byte write to

the same location with the supported persist instruction (NoCache, Cache, CacheIn-
validate, None). We perform 100 million operations on 10 GiB of data and sample

every 5000
th
operation. The results show that read latency is consistent across

servers. While their read bandwidth differs significantly, there is no difference in

35

Chapter 3 Benchmarking Persistent Memory Access

Read +NoCache +Cache +CacheInv +None
0

450

900

1350

1800

L
a
t
e
n
c
y
(
n
s
)

A-128 A-256 A-512 B-256 B-D

Figure 3.5: 256 Byte random read + write latency. 16 Threads.

latency. However, the latency is still 3× higher than in B-DRAM, which is also

approximately the factor between both for random read bandwidth.

When following the readwith a write operation, latency is not equal on all servers.

We observe that A-256 and B-256 have lower latency than the other servers across

all flush operations. While read latency is bound by the latency of physical media

access, write latency is more nuanced, as writes do not need to be flushed to the

medium to be considered complete. Flushing to a full write pending queue blocks

the caller and has higher latency. Due to B-256’s higher bandwidth, more writes

are flushed, freeing up space in the queue. The latency across all explicit persist

instructions is consistent within each server, with NoCache having a slightly lower

latency. Not flushing when writing 256 Byte of data has the highest latency (and

lowest bandwidth), as randomly evicted cache lines cause high write amplification,

blocking the write pending queues.

When running the same experiment with 64 Byte access, the latency is nearly

identical for all instructions except None. For None, omitting the flush for con-

secutive memory addresses prevents efficient write combining. But for 64 Byte

writes, write combining cannot be performed, so there is no disadvantage. For

latency-critical applications, the choice of persist instruction is not relevant from a

performance perspective. However, when writing more than 64 consecutive Bytes,

an explicit flush should be used to benefit from write combining, even in eADR

servers such as B-256.

While we observe a bandwidth increase across generations, latency has not

improved. Additionally, we notice a correlation between higher available bandwidth

and reduced write latency. However, most research focuses on bandwidth as a

limiting factor of PMem compared to DRAM. Our results raise the question of

whether future designs should shift their focus towards avoiding latency instead.

Especially in latency-bound applications, new approaches may sacrifice bandwidth

36

PerMA-Bench Results Section 3.3

Read +NoCache +Cache +CacheInv +None
0

450

900

1350

1800

L
a
t
e
n
c
y
(
n
s
)

A-128 A-256 A-512 B-256 B-D

Figure 3.6: Double-flush latency. 64 Byte read + 2× 64 Byte write.

to reduce latency, e.g., by writing additional data, which in turn reduces additional

random lookups.

Double Flush Latency

Current PMem systems often store metadata for tree nodes, hash buckets, or storage

pages in a single cache line and repeatedly update, e.g., counters, bitsets, or locks

in that cache line [14, 101, 123]. While this practice is often used, some authors

discourage it due to high latency [78, 138]. In this section, we evaluate the impact of

different persist instructions when flushing the same cache line twice (double-flush).
We perform 100 million operations on a 10 GiB range and sample every 5000

th

operation.

In Figure 3.6, we see that the double-flush latency for A-128 and A-512 is 2×
of the single flush latency shown in Figure 3.5. In comparison, the double-flush

latency of A-256 and B-256 is only marginally higher than the single flush. Under

high load, these servers achieve higher bandwidth, which results in less pressure

on the write queue and, in turn, reduces the latency of individual writes.

By comparing Cache and CacheInvalidate, we see that in the second generation

Optane DIMMs there is actually a difference between the used persist instruction.

The 2
nd

generation Xeon CPUs in the Apache servers do not fully implement clwb,
internally mapping it to clflushopt instructions instead. As B-256’s CPU supports

true clwb, we observe that invalidating flushes (via clflushopt) have a higher

latency due to the required memory read between the writes. While the latency of

B-256 is slightly higher than that of A-256 for None and CacheInvalidate, it is lower
for Cache and NoCache stores. Thus, we conclude that using non-invalidating flush
operations on the same cache line is preferable for 200 Series Optane, as it does not

include the penalty of invalidating the cache line, which occurred in the 100 Series.

37

Chapter 3 Benchmarking Persistent Memory Access

3.3.4 Database-Related Workloads

In this section, we present the results of database-related workloads modeled in

PerMA-Bench. The memory access patterns in these workloads are based on actual

implementations of PMem index structures. Expressing complex memory access

patterns in PerMA-Bench allows users to gain insight into their design choices

at a memory-performance level before having to implement numerous options.

This also helps to understand where performance is lost and where operations

are close to the underlying memory performance. Our results show that both

existing systems that were designed for a specific server configuration and systems

that were designed pre-Optane do not fully utilize the underlying performance

improvements of second-generation Optane.

First, we discuss the performance of PMem-aware index-inspired workloads com-

pared to a DRAM-only version in Section 3.3.4. Then, we evaluate the performance

of actual PMem-aware implementations based on our findings in PerMA-Bench.

We show that current designs often cannot fully utilize the performance improve-

ments of 200 Series Optane and avoiding explicit flushes in eADR does not always

yield the highest bandwidth. To provide more general solutions, future work on

PMem-aware systems must expand beyond designs evaluated on a single setup and

reconsider design choices that may have been altered by newer characteristics of

200 Series Optane.

Database Index Operations

In this section, we cover a wide range of database-related index workloads in

PerMA-Bench, run with 32 threads. When designing PMem systems, a DRAM-

based version is often used as a comparison to show the efficiency of the chosen

design. To cover this, we model our access based on PMem but run the experiments

in both PMem and DRAM. We use the throughput of all access in DRAM as a

baseline and show the factor × by which the throughput of the same access in

PMem is lower. From our evaluation in the previous section, we know that DRAM’s

random read bandwidth is 5 – 10× higher than PMem’s for 64 Byte access and 3

– 4.5× for 256 Byte access (see Section 3.3.2). DRAM’s random write bandwidth

is up to 2 – 6× higher for 64 Byte with explicit flushes, and 3 – 6× higher for 256

Byte writes. Unflushed writes have an up to 30× higher bandwidth. This shows the

strong imbalance between DRAM and PMem for random access data structures,

especially if only tiny amounts of data are changed, e.g., an 8 Byte pointer in an

index. Understanding these differences is important to optimize access to each

38

PerMA-Bench Results Section 3.3

a) Up.
0

2

4

6

F
a
c
t
o
r
l
o
w
e
r

t
h
a
n
D
R
A
M

b) Lk.
0

2

4

6

c) Up.
0

2

4

d) Lk.
0

2

4

e) Up.
0

1

2

f) Lk.
0

1

2

Hash Index Tree Index (PMem) Tree Index (Hybrid)

A-128 A-256 A-512 B-256 B-D

Figure 3.7: Factor × lower throughput than DRAM of updates (Up.) and lookups (Lk.) in
PMem index workloads. 32 Threads. Access modeled after Dash (Hash), FAST+FAIR (Tree

PMem), and FPTree (Tree Hybrid).

memory type accordingly. We perform 100 million operations across 10 GiB in all

workloads.

We model the access patterns for a hash index like Dash [101]. For lookups, its

access consists of a 512 Byte read, representing two adjacent 256 Byte buckets,

followed by two 64 Byte cache flushes for updates. In Figures 3.7a and b, we see

how the improved random access performance of B-256 closes the gap to DRAM.

As the access pattern of a hash index is O(1) by design, the improvement should

apply directly to real workloads. However, PMem still performs significantly worse

than DRAM, as small updates to the index have a high write amplification, e.g., 16×
for 16 Byte updates.

We model a PMem-only tree index after FAST+FAIR [58]. Based on the authors’

implementation, we issue 3× 512 Byte random reads for a lookup and 4× 64 Byte

cache flushes for an insert, as 50% of a node has to be moved on average when

inserting a value into a leaf in FAST+FAIR. We see an average performance of

around 4× in the 100 Series and 3× in the 200 Series. As this design operates on

512 Byte nodes, we observe the expected ~4× higher DRAM bandwidth for lookups.

Updates perform slightly worse, but better than the raw DRAM bandwidth would

suggest. However, four flushes per update (on average) are expensive, even in

DRAM, as each one entails a memory fence instruction that clears all write buffers.

We represent a hybrid DRAM-PMem tree through FPTree [123]. PerMA-Bench

issues 2× 2048 Byte DRAM reads and 1× 1024 Byte PMem read for lookups, fol-

lowed by 3× 64-byte cache flushes for updates, based on the node sizes in the

implementation that we use [52]. We see that the hybrid tree is closer to DRAM in

relative performance, as most of the random lookups occur in DRAM. Thus, we see

an overhead of 1.7× for placing the leaves in PMem on B-256. The Apache servers

39

Chapter 3 Benchmarking Persistent Memory Access

PerMA Dash

0

10

20

30

40

M
i
l
l
i
o
n
O
p
s
/
s

1
0
0
%

1
3
3
%

1
0
2
%

1
7
9
%

1
0
0
%

1
3
1
%

9
6
% 1
6
4
%

a) Update

PerMA Dash

0

20

40

60

80

1
0
0
%

1
1
4
%

1
0
8
%

1
8
4
%

1
0
0
%

1
2
2
%

1
0
7
%

1
4
7
%

b) Lookup

A-128 A-256 A-512 B-256

Figure 3.8: Hash index in PerMA and Dash. 16 threads.
PerMA: 512 Byte lookup + 2× 64 Byte Cache update. Dash: 8/8 Byte key/value.

have a higher overhead, as their random read PMem bandwidth is lower and their

DRAM is generally slower.

Overall, we see that random access patterns in PMem index structures perform

significantly worse than in DRAM. Especially with small random writes, perfor-

mance drops compared to PMem. We also note that these patterns are not optimized

for DRAM, meaning that without the explicit flushes, even higher performance

is observed. In the case of the hash index, we observe a 1.3× increase in DRAM

when omitting the flush. But while PMem-based indexes cannot achieve the raw

performance of DRAM, they offer (full) persistence and recovery with an average

performance drop of only 4×. In addition, the price per GB of PMem is 4 – 6× lower

than DRAM, striking a balance in price-performance.

Hash Index

In this section, we compare the PMem-aware hash index Dash [101] and the corre-

sponding operations’ memory access pattern in PerMA-Bench. We prefill Dash with

100 million entries before performing 100 million operations using the benchmark

tool provided by the authors. The results are shown in Figure 3.8.

PerMA-Bench provides a good upper bound estimate of performance based

on solely on memory access. For all Apache servers, the relative performance

in raw access transfers directly to the relative performance of Dash. The insert

performance is more complex in Dash, as it includes regular inserts, displacement,

overflow buckets, and resizing. As these depend heavily on the implementation, it is

not possible to model all in one custom operation. For our comparison, we assume

an idealized insert without resizing and displacement and, thus, overestimate the

insert performance. Developers can model all operations individually and run the

benchmarks separately. This provides a good overview of the individual operations’

40

PerMA-Bench Results Section 3.3

PerMA F+F

0

10

20

M
i
l
l
i
o
n
O
p
s
/
s a) Lookup

PerMA F+F

0

5

10

b) Update

PerMA F+F

0

3

6

c) Scan

A-128 A-256 A-512 B-256

Figure 3.9: Tree index in PerMA and FAST+FAIR. 16 threads.

performance and the results can be combined to determine the overall performance

depending on the configuration parameters of the desired implementation. If a

displacement takes 𝑋 𝜇𝑠 , depending on the ratio of inserts to displacements, e.g.,

3:1, we can add 𝑋/3 𝜇𝑠 to each insert to combine both operations.

PerMA-Bench also provides insight into potential areas of improvement. Dash

achieves close-to-raw performance for lookups, which indicates that there is not

much room for optimization in designs that access at most two buckets to retrieve

an entry.

Finally, we observe that Dash underperforms on B-256. Unlike the 100 Series

servers, Dash’s relative raw lookup performance in PerMA-Bench is 40% higher

than the actually achieved throughput. When investigating the performance in

more detail, we see that Dash spends nearly 20% of all cycles on machine clears
caused by memory ordering violations [59], which do not occur on the Apache

servers. While we use Dash in this experiment, this problem is not Dash-specific

but a general issue in current systems designed for PMem. Due to the high price,

researchers often have access to only one server, resulting in current research

focusing on a single configuration during development. Our results show that its

performance is not yet understood well enough to generalize from one server to

all, especially across generations. Now that the second generation Optane DIMMs

are available, it is beneficial to consider more than one server to develop more

general PMem-aware solutions in the future. In the following section, we show

that performance limitations occur also in other index structures.

Tree Index

In Figure 3.9, we show the FAST+FAIR BTree implementation [58] and its mod-

eled memory access in PerMA-Bench. FAST+FAIR is a popular PMem-only BTree

implementation that was designed pre-Optane. We prefill 100 million records be-

fore performing 100 million operations using the benchmark tool provided by the

41

Chapter 3 Benchmarking Persistent Memory Access

authors. The ideal-insert assumption as in Dash also applies to this benchmark.

Across all operations, we see that the raw performance of B-256 is significantly

higher than that of the 100 Series servers. However, this does not translate to

FAST+FAIR, as its performance improves only marginally across generations.

As it was designed pre-Optane, it does not include various optimizations made

in later designs. When taking a closer look at the execution, we see that 30% of

all cycles are consumed by bad speculations, front-end stalls, and computation.

These 30% are reflected in the performance difference between PerMA-Bench and

FAST+FAIR. Compared to more recent work, FAST+FAIR also makes use of heavy-

weight locking instead of atomics or hardware transactional memory. This overhead

prevents FAST+FAIR from scaling with the higher performance of the newer Optane

DIMMs.

These results indicate that general implementations without explicit knowledge

of the underlying PMem technology do not scale well with better hardware. The

memory access in FAST+FAIR is not optimized towards Optane, e.g., by requiring

many flushes for updates due to sorted nodes. In another experiment, we observe

better scaling results for the pre-Optane FPTree [123], as we used a version that

was re-implemented more recently on Optane [52]. Adding to our insights on

the Optane-tuned hash index Dash in Section 3.3.4, we conclude that it is also

not viable to rely only on general PMem assumptions, as done in pre-Optane

designs. It is beneficial to tune PMem-aware systems across a range of current

hardware to capture the intricacies of Optane without optimizing solely for one

server configuration. Especially with increasing PMem performance as in B-256,

bottlenecks may shift from PMem access to, e.g., CPU or DRAM, requiring a balance

between them.

Impact of eADR

In 200 Series Optane, eADR guarantees the persistence of data that resides in

the cache, thus, making explicit flushes unnecessary. In this section, we evaluate

the impact of omitting explicit flushes and issuing only sfence instructions
7
on

various PMem-aware key-value storage designs. In this evaluation, we also include

LB+Tree [97], a hybrid DRAM-PMem B+Tree optimized highly and explicitly for

Optane, and Viper (Chapter 4 and [14]), a hybrid DRAM-PMem log+index key-value

store that is designed for operations on larger items than 8 Byte index entries. This

gives us a broader overview of PMem storage designs. We show the results of 32

and 64 thread runs on B-256 for FPTree, LB+Tree, Dash, and Viper in Figure 3.10.

7 sfence is still required to ensure correct ordering.

42

PerMA-Bench Results Section 3.3

32 64

Threads

0

5

10

15

M
i
l
l
i
o
n
O
p
s
/
s

a) FPTree

32 64

Threads

0

15

30

45

b) LB+Tree

32 64

Threads

0

10

20

c) Dash

32 64

Threads

0

5

10

15

d) Viper

Regular persist sfence-only

Figure 3.10: Impact of eADR on write performance of different PMem key-value storage

designs (Barlow-256). 32/64 threads.

For the three index structures, we use 8/8 Byte key/values. For Viper, we use 16/200

Byte key/values. We evaluate FPTree with pibench [90]. For LB+Tree, Dash, and

Viper we use the respective benchmark tools provided by the authors.

Our results show that for the tree-based designs, removing explicit flushing

improves performance. However, for Dash, we observe no improvement and even a

slight decrease for 64 threads. When storing larger records in Viper, we observe that

not explicitly persisting reduces performance by 10%. Viper is designed to leverage

sequential PMem writes, which are lost through random cache line eviction when

omitting flushes (cf. Section 3.3.2).

Our results show that eADR is not a silver bullet for future PMem-system design.

Developers must still understand their access patterns and evaluate whether they

benefit from explicit flushes or not. Based on this, we encourage future work that

explicitly compares low-level flush performance in PMem index/storage designs to

provide an overview of benefits and downsides in this space.

3.3.5 Single Server Performance
In this section, we investigate configurations and settings that impact a single

server. First, we show the impact of Intel’s hardware prefetchers on memory

bandwidth and discuss the implications this has for general PMem-aware system

design (Section 3.3.5.) Next, to provide insight into the performance of partially

stocked servers with older or lower-end components, we evaluate the performance

of a single server with varying configurations. For economical reasons, users may

not always choose fully stocked servers (one DIMM per available slot) with the

highest configuration and latest components. To this end, we investigate the impact

of the memory bus speed on PMem bandwidth (Section 3.3.5), followed by the

impact of the number of DIMMs (Section 3.3.5).

43

Chapter 3 Benchmarking Persistent Memory Access

64 256 512 1024

0

25

50

a) A-256 – 16 Threads

64 256 512 1024

0

25

50

b) A-256 – 32 Threads

64 256 512 1024

0

25

50

c) B-256 – 16 Threads

64 256 512 1024

0

25

50

d) B-256 – 32 Threads

T
h
r
o
u
g
h
p
u
t
(
G
B
/
s
)

Access Size in Byte

Prefetcher On Prefetcher Off

Figure 3.11: Impact of prefetcher on random read bandwidth.

Prefetcher

Throughout our evaluation, we observeworkloads for which PerMA-Bench achieves

lower performance than expected due to Intel’s hardware prefetching behavior.

This observation has been made in previous work [31] and we investigate it further

in Figure 3.11. We actively disable all hardware prefetchers and measure the

bandwidth utilization of 200 million random reads across 10 GiB with varying sizes.

In the top row, we see that Apache-256 performs worse when the prefetcher is

active for 1024 Byte reads with both 16 (a) and 32 threads (b). On the other hand,

Barlow-256 performs worse for 512 and 1024 Byte but only with 16 threads (c). With

32 threads, the prefetcher impacts the performance only marginally (d). For the

impacted runs, we observe higher bandwidth utilization in VTune, which indicates

that the prefetcher is mistakenly fetching unnecessary data and thus reducing the

effective bandwidth.

To transfer these insights to a real system, we run a micro-benchmark on Barlow-

256 with the key-value store Viper. In this, we observe that disabling the prefetcher

for 200 Byte values results in a 40% performance increase for get requests with 32

threads. But for 64 threads, a disabled prefetcher reduces performance by 30%. So

while it is not generally advisable to disable the hardware prefetchers, its impact

should be taken into account when designing, profiling, and optimizing systems

that operate on larger data chunks, e.g., buffer managers or storage engines.

Memory Bus Speed

Optane modules share the memory bus with regular DRAM DIMMs, so they must

run at the same memory bus speed. While DRAM often supports higher speeds

44

PerMA-Bench Results Section 3.3

Seq.

Read

Seq.

Write

Rnd.

Read

0

20

40

60

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

a) Raw

64 Byte

Read

0

250

500

L
a
t
e
n
c
y
(
n
s
)

b) Latency

Tree

Lookup

Update

Hash

0

10

20

30

M
i
l
l
i
o
n
O
p
s
/
s c) Index

A-2133 A-2400 A-2666 B-2933 B-3200

Figure 3.12: Performance-impact of varying memory bus speeds (in MT/s) on Apache-256
and Barlow-256. 32 threads.

than Optane, this is not always the case, e.g., when using older DRAM modules,

requiring users to reduce the speed of their PMem. To investigate which impact

this has on PMem performance, we configure the memory bus in Apache-256

and Barlow-256 to different speeds. In Figure 3.12, we show the performance of

sequential reads and writes, random reads, as well as read latency, and custom hash

and tree index operation throughput. We use the same configurations as in the

previous benchmarks. Apache-256’s DRAM supports up to 2933 MT/s but is limited

by PMem at 2666 MT/s, which we choose as the baseline. We also configure the

bus speed to 2400 and 2133 MT/s to artificially slow down the server. Barlow-256’s

DRAM and PMem both support 3200 MT/s and we compare this to 2933 MT/s
8
.

Our results show that PMem read bandwidth is impacted only marginally by

reduced memory speed and not at all for write bandwidth. With a bus speed of

2666 MT/s, the theoretical bandwidth limit is ~20 GiB/s (= 2666 × 10
6 × 8 Byte).

In a server with six DIMMs, this allows for a theoretical maximum of ~120 GiB/s.

Reducing the bus speed to 2133 MT/s results in a limit of ~16 GiB/s per DIMM and

~96 GiB/s across all DIMMs, i.e., a drop of 20%. However, PMem cannot supply

data at this rate and stays significantly below the limit. The marginal difference in

performance across the configurations is a result of slightly increased access latency

due to fewer transfers per second. For DRAM, on the other hand, we observe a

20% bandwidth drop as it can provide data at the maximum frequency. Overall, we

observe little to no performance drop and conclude that the selected memory bus

speed is negligible for current Optane PMem. This also holds for 200 Series Optane,

where it may be more common to have DRAM that limits the bus speed, as 3200

MT/s is also the current speed supported by DRAM.

8 The server’s BIOS does not allow configurations below 2933 MT/s.

45

Chapter 3 Benchmarking Persistent Memory Access

Seq. Read Rnd. Read

a) Read

0

15

30

45

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

1
x 2
.7
x 6
.0
x

8
.4
x

1
x 2
.8
x 5
.8
x

7
.2
x

Seq. Write Rnd. Write

b) Write

0

5

10

15

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

1
x 2
.1
x 4
.3
x 6
.5
x

1
x

2
.0
x

3
.9
x

5
.9
x

64 Byte Read

c) Latency

0

250

500

750

L
a
t
e
n
c
y

(
n
s
)

1
x

0
.7
x

0
.6
x

0
.6
x

Tree Lookup Hash Update

d) Index

0

10

20

30

M
i
l
l
i
o
n

O
p
s
/
s

1
x 1
.7
x

2
.6
x

3
.1
x

1
x 2
.0
x 4
.1
x 6
.3
x

1 DIMM 2 DIMMs 4 DIMMs 6 DIMMs

Figure 3.13: Impact of number of DIMMs in the server (Apache-256). 16 threads. Sequen-

tial/random reads with 4096/256 Byte access size. Sequential/random writes with 512/64

Byte access size and NoCache. Tree with 512 Byte nodes. Hash with 256 Byte buckets.

Number of DIMMs

To provide insight into the performance of servers with only partially filled PMem

slots, we evaluate PMem with a varying number of DIMMs. This allows us to

both draw conclusions about how to stock a PMem server and also to make re-

sults of recent studies [82, 97, 144], which ran experiments on partially stocked

servers, comparable to a full server. All experiments are run on a single socket of

Apache-256 with 16 threads, we do not measure cross-socket performance. We

run the experiment with all supported configurations, i.e., with 1/2/4/6 DIMMs.

We physically remove the unused PMem DIMMs but keep all six DRAM DIMMs,

following the official memory population guide [37]. In Figure 3.13, we show the

bandwidth utilization of sequential and random read and write workloads, as well

as random read latency and operations per second for tree index lookups and hash

index updates.

In Figures 3.13a and b, we show the absolute bandwidth and relative improvement

over the 1 DIMM configuration. For reads and writes, we observe two different

patterns. For write bandwidth, we observe a near-perfect linear scale. Each DIMM

is fully saturated and constitutes a bottleneck. By adding more DIMMs, we evenly

distribute the load across all available DIMMs until we have reached the maximum

bandwidth. For sequential writes, we see a slightly super-linear scale. With fewer

46

Server Price-Performance Section 3.4

DIMMs, the load on the individual DIMMs is higher and the write combining

buffers receive more requests. They cannot combine adjacent stores as efficiently,

resulting in increasing write amplification. When using 32 threads, this effect is

even stronger, as the buffers are overloaded with requests. In this case, we observe

an 11.9× increase from one to six DIMMs.

Read bandwidth utilization shows super-linear scaling from one to two and

from two to four DIMMs. On currently supported CPUs, configuring a server

with fewer than six PMem DIMMs results in an unbalanced configuration. While

these unbalanced setups are supported, they are not recommended [121]. Memory

controllers cannot optimize the memory layout and must create multiple interleave

sets, resulting in worse performance. Additionally, the server must run in single-

channel mode when using a single DIMM, which further reduces performance. For

sequential reads with six DIMMs, PMem achieves 42 GiB/s or 7 GiB/s per DIMM.

With 1 DIMM, it achieves only 5 GiB/s, which is ~30% worse.

Read latency decreases with more DIMMs, as the contention on each is reduced.

Once the load is distributed, latency is not affected as much. This translates directly

to the tree and hash index operations shown in Figure 3.13d. The tree lookup is

impacted more by latency, so its performance does not improve as much as raw

bandwidth. The hash index updates reflect the scaling of random writes with an

influence of increased preceding read bandwidth.

Overall, we see a predictable performance pattern when using more than one

DIMM, which allows us to transfer the results of previous work by approximately

scaling the used number of DIMMs to six. Our results show that Optane PMem

should be configured fully stocked and balanced to achieve maximum performance.

However, if this is not possible, prefer multiple smaller DIMMs, e.g., 4× 128 GB

= 512 GB, over fewer larger ones, e.g., 1× 512 GB to achieve a near-balanced
configuration and reduce the load on the individual DIMMs, which otherwise

quickly become over-saturated.

3.4 Server Price-Performance

A major selling point of Intel Optane is its lower price for higher capacity than

DRAM. However, there is very little actual price-performance analysis in existing

research. To provide insight into this, we perform a price-performance comparison

across all evaluated servers. As major cloud vendors do yet not offer PMem, we

base our analysis on the price as listed by Dell when configuring a server with

Optane [135]. We note that the actual price of PMem differs slightly depending

47

Chapter 3 Benchmarking Persistent Memory Access

Table 3.2: PMem price-performance comparison in Euro (e). See Table 3.1 for server info.

Apache-128 Apache-256 Apache-512 Barlow-256 B-DRAM
e per

DIMM

1180 2750 8500 3270 1900

e/System
(GB capacity)

7080

(768)
16500

(1536)
51000

(3072)
26160

(2048)
15200

(256)
e/GB

capacity

9.21 10.74 16.60 12.77 59.37

e/GB/s
seq. read

0.25 0.25 0.56 0.22 0.38

e/GB/s
rnd. read

0.34 0.33 0.61 0.33 0.46

e/GB/s
seq. write

0.78 0.64 1.52 0.60 0.70

e/GB/s
rnd. write

3.43 2.78 6.18 2.12 0.91

e/100ns
latency

46.34 52.38 83.94 64.49 80.61

e/update
hash index

0.39 0.36 0.71 0.27 0.46

e/lookup
tree index

0.56 0.60 0.96 0.42 0.84

on the source, country, and currency
9
, but the relative difference between them is

consistent. As such, our focus is not on the exact monetary values but rather on the

relative difference between the servers. We base the performance-related values on

the price per GB to explicitly exclude the price of higher capacity. As the Apache-

128 server does not support 18 Watt, a comparison against the 18 Watt Apache-256,

which supports this improvement, does not yield unfair results. However, an 18 W

512 GB server may achieve better price-performance than in our evaluation. To the

best of our knowledge, this is the first extensive price-performance comparison of

PMem across various configurations.

We show the price-performance results in Table 3.2. We first compare the PMem

servers and then draw an overall comparison to DRAM. The price per GB capacity

increases with the DIMM size, resulting in an up to ~80% difference within the

100 Series. Across generations, i.e., Apache-256 to Barlow-256, the price per GB

increases by ~20%. The price for sequential and random read throughput differs

9 We checked dell.de, dell.com, and hpe.com in February 2022 and December 2021.

48

http://dell.de
http://dell.com
http://hpe.com

Server Price-Performance Section 3.5

only slightly between the various PMem servers. However, Apache-512 is an outlier,

as it offers the lowest performance (cf. Section 3.3.2) but the highest price, even

when considering a 20% performance improvement through an 18 W configuration.

We see a wider range in the price-performance for both sequential and random

writes. They differ by up to 1.5× and 2.9×, respectively. Due to significantly higher

write bandwidth (cf. Section 3.3.2), it becomes apparent why both Apache-256 and

Barlow-256 achieve up to 25/40% lower prices than the cheapest server (Apache-128)

for sequential/random writes.

The price difference for hash index updates (normalized to 1 million operations)

is a mix of the random read and write prices. Due to the low random read variance,

the price variance across servers is not as significant as for pure random writes.

The normalized 1 million tree lookups represent a random read workload and their

relative price-performance ratio does not differ significantly from the random read

ratios.

Regarding bandwidth and latency, DRAM outperforms PMem significantly (see

Sections 3.3.2 and 3.3.3). However, DRAM’s price per GB is up to 6.4× higher than

PMem’s. Our results show that PMem is competitive with DRAM in most of the

raw access patterns, i.e., sequential/random reads and sequential writes. DRAM

outperforms PMem for random writes, as PMem’s bandwidth is significantly lower

for such workloads. This read/write split also extends to more complex access in

data structures, where DRAM outperforms PMem for write-intensive operations

but offers little to no benefit for read-only access.

To optimize the price-performance of a server for a given workload, users have

to choose which and how many DIMMs to buy. While this choice is heavily

workload-dependent, our results show that users can use the following rule of

thumb: maximize the number of DIMMs for a target capacity. If the workload fits

into DRAM, there is no need for PMem, as this requires special CPUs and increases

the overall cost. If the workload exceeds DRAM, users should use 𝑛 DIMMs of the

smallest size that offer the needed capacity, i.e., users should prefer 4× 128 GB over

2× 256 GB over 1× 512 GB. Our results in Section 3.3.5 show that the performance

scales almost linearly, so while 256 GB DIMMs have a better individual performance

than the 128 GB DIMMs, two 128 GB DIMMs outperform one 256 GB DIMM while

providing the same capacity at a lower overall price. Thus, we suggest to use larger

DIMMs only when the capacity is needed, as the price grows disproportionately

higher for larger capacity.

49

Chapter 3 Benchmarking Persistent Memory Access

3.5 Discussion
In this section, we present key takeaways from running PerMA-Bench and PMem-

aware systems on various server configurations.

PMem Configurations. Our results show that the exact server configuration

has a large impact on PMem performance. We identify four aspects that have not

yet been studied in detail.

1) DIMM size: We show that the choice of DIMM size does not only impact

capacity but also performance, especially as only the 256 and 512 GB DIMMs

support higher power budgets.

2) Power budget: The 18 Watt power budget of Apache-256 improves write band-

width by up to 40%, which is a major improvement considering PMem’s other-

wise limited write bandwidth. If possible (only for 256 and 512) and supported

by the server, users should increase the power budget of their DIMMs.

3) Number of DIMMs: Varying the number of DIMMs has a predictable, close-to-

linear impact on performance unless only a single DIMM is used. This causes an

imbalanced memory configuration and a fallback to single-channel execution.

For maximum performance, fully stocked servers should be chosen.

4) Memory bus speed: While DRAM and PMemmust run with the same memory

speed, we show that this does not impact PMem. The theoretical limits exceed

PMem’s performance, so users can reduce the speed if needed without losing

performance.

Future PMem Research. We identify four additional aspects that impact PMem-

aware implementations. With the increasing performance of PMem, previous

bottlenecks may shift away from PMem to, e.g., the CPU, requiring more advanced

and specialized implementations. As PMem is a new and evolving memory tech-

nology, a detailed understanding and optimization level known from DRAM must

still be developed for it.

5) Hardware utilization: We observe that existing indexes do not fully utilize

the performance improvements of the second generation. With more Optane

configurations available, it is essential to tune future designs across a wider

range of servers to achieve more stable performance.

6) Persist instruction: While the choice of persist instruction for random writes

impacts bandwidth by only 30% in the 100 Series, it makes a difference of up to

50

Related Work Section 3.6

2.5× in the 200 Series. Future work has to consider this and re-evaluate which

choice of persist instruction is best-suited for different designs. Especially, now

that the 200 Series allows for two different cache flushes, non-temporal stores,

and no stores via eADR.

7) eADR:We show that omitting flushes due to eADR does not always yield the

best performance. It remains important to understand when explicit flushes

improve bandwidth utilization and latency, and when they do not.

8) Prefetcher: The prefetcher has an unexpected negative impact on certain

workloads. While it should not be disabled, developers have to be aware that

their system may be influenced by it.

Price-Performance. Within the first Optane generation, we identify 512 GB

DIMMs to have the worst price-performance by a large margin. But overall, we

show that PMem’s price-performance is generally competitive with DRAM or

even better. This allows PMem to be used as both explicit persistent memory or

as cheaper and larger volatile memory, potentially even allowing for in-memory

processing of workloads that previously did not fit into DRAM.

3.6 Related Work
In this section, we briefly discuss related work around PMem.

Persistent Memory Analysis. Various studies on the performance of PMem

have been conducted. Earlier work focuses on performance assumptions and latency

ranges to evaluate PMem in the context of various applications [7, 123, 141]. More

recently, the performance of Intel’s Optane DC Persistent Memory is investigated

in more detail [19, 31, 47, 71, 138, 147]. These studies provide insight into the

performance details of individual servers. In this work, we evaluate and compare

the performance of PMem across various setups and show that this is needed to

gain a better understanding of overall PMem behavior. These early benchmarks

and existing tools such as fio [9] often run hard-coded queries or cannot represent

complex access patterns and varying persist instructions, which are both essential

to understand the performance of PMem for database components. To represent

access patterns of current PMem systems, PerMA-Bench offers customizable, mixed

PMem-DRAM pointer-chasing with locality-aware store instructions.

Persistent Memory Applications. The use of PMem is widely studied in index

structures [27, 56, 87, 97, 101, 113, 123, 156], key-value stores [14, 26, 91], database

systems [7, 8, 106, 122, 129], and filesystems [76, 117, 146]. We extract common

51

Chapter 3 Benchmarking Persistent Memory Access

access patterns from this work and define the workloads in PerMA-Bench based on

them.

3.7 Conclusion
In this chapter, we propose PerMA-Bench, a configurable benchmark framework

that allows users to evaluate the bandwidth, latency, and operations per second

for customizable database-related PMem access. We perform an extensive analysis

across four PMem servers of the first and second Optane generation, with vary-

ing configuration options, such as DIMM power budget, memory bus speed, and

number of DIMMs per server. We show which impact these configurations have on

performance and raise awareness for the overall configuration space of PMem. We

validate our results with existing implementations and show that they do not fully

utilize the performance improvements across Optane generations. We show that

the choice of persist instruction has a high performance impact and that avoiding

explicit flushes in eADR does not always yield the best results. Finally, we perform

a price-performance comparison across all evaluated servers. While there are great

differences between Optane DIMMs, PMem is generally competitive with DRAM.

This allows PMem to be used as both explicit persistent memory or cheaper and

larger volatile memory.

PMem is still a new and evolving technology and research into PMem-aware

databases is still in its infancy compared to DRAM. We present directions for future

designs, implementations, and evaluation of PMem solutions that are needed to

fully understand and utilize the hardware. We make our evaluation results available

and with PerMA-Bench, we hope to lead the way to a common understanding of

PMem performance by gathering and comparing various existing configurations

and future PMem hardware.

52

4 Viper: An Efficient Hybrid
PMem-DRAM Key-Value Store

The majority of this chapter has been published in [14].

4.1 Introduction

Persistent key-value stores (KVSs) have become a widely used alternative type of

data store next to classical relational database management systems (RDBMSs).

Different to RDBMSs, KVSs store schema-less data (value) retrievable through a

given key. KVS workloads also differ from classical RDBMS workloads in that

they are write-heavy and nearly exclusively operate on single records [91]. These

workload characteristics allow for a variety of KVS applications, ranging from

storage engines in SQL systems [32], over state-storage for stream processing

engines [21, 150], to caches for web applications [128]. On a large scale, these

use-cases all require high performance and strong persistence guarantees.

To ensure data persistence, current KVSs write their data to devices with a block-

based interface, i.e., SSDs or HDDs. However, the emergence of persistent memory

(PMem) promises byte-addressable data persistence with close-to-DRAM speed [44,

71, 138, 147]. Thus, leveraging PMem for KVSs and removing disk access has a large

potential to improve KVS performance. It also supports the storage of arbitrary

data structures without the need for record de-/serialization, which is required in

traditional string-based KVSs.

To improve the performance of write-heavy workloads, most traditional persis-

tent KVSs such as RocksDB [38] or LevelDB [43] optimize their inserts to avoid

expensive write amplification on block-based devices. They employ log-structured

trees [120] to collect records in-memory that are then written to disk in a sin-

gle block-sized chunk. This approach requires additional disk-based write-ahead

logging to ensure data persistence, as well as sophisticated merging logic for the

disk-writes. Additionally, most disk-based KVSs require string or byte keys and

values to store arbitrary data. This comes at a high de-/serialization cost for each

access, significantly impacting the overall performance [40, 104].

Previous PMem research either focuses on how to adapt existing systems or

develop new ones to harness PMem’s potential. Various hybrid PMem-DRAM

data structures have been proposed that leverage the speed of DRAM with the

53

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

persistence of PMem for better overall performance. Most research focuses on

the design of index structures, e.g., B-Trees [123, 148], LSM-Trees [98], or hash

maps [101, 114]. Other research integrates PMem into larger systems, e.g., for

database buffer management or recovery [7, 129]. Some simulated-PMem KVSs

have also been proposed [98, 145].

However, as PMem has only recently become publicly available, the majority of

previous PMem research uses simulations to estimate PMem performance in which

key characteristics were assumed incorrectly [147]. These incorrect assumptions

limit the effectiveness of proposed solutions as the optimal utilization of PMem

requires knowledge of the underlying storage access patterns and characteristics.

Recent research shows that Intel’s Optane DIMMs [69] behave differently than

DRAM and SSD [31, 147]. Thus, simply replacing disk-based storage with an

identical PMem-based one does not yield the best performance. Benchmarks also

show that sequential write latency to PMem is much closer to DRAM’s performance,

whereas there is a higher penalty for random reads than expected [44, 147]. This

breaks one main assumption previous research built upon, that writes are slow and

should be avoided and reads are fast and can be random.

To overcome the central performance issues of disk-based KVSs and incorrect

assumptions of previous PMem research, we propose three PMem-specific access

patterns for efficient data storage, direct PMem writes, DIMM-aligned storage seg-
ments, and uniform thread-to-DIMM distribution. We implement these patterns

in Viper, a hybrid PMem-DRAM KVS whose persistence is built on PMem, thus

avoiding expensive disk accesses. Viper consists of a volatile index and persistent

data, to perform most of the random operations in fast DRAM while optimizing the

storage layout for efficient writes to PMem. In summary, we make the following

contributions:

1) We propose PMem-specific access patterns to efficiently store and retrieve data

directly to and from PMem in a hybrid PMem-DRAM environment.

2) We implement these access patterns in Viper, a hybrid PMem-DRAM KVS that

persists its data directly in PMem.

3) We evaluate Viper against state-of-the-art KVSs and show that it outperforms

them for core KVS operations. Viper exceeds existing PMem-only, hybrid, and

disk-based KVSs by 4–18x for write workloads, while matching or surpassing

their get performance.

The remainder of this chapter is structured as follows. In Section 4.2 we cover

some technical background on key-value stores. In Section 4.3 we introduce Viper

54

Background Section 4.3

and its core design principles. We show Viper’s core functionality in Section 4.4,

followed by a detailed evaluation in Section 4.5. We end this chapter with an

overview of related work in Section 4.6 and our conclusion in Section 4.7.

4.2 Background
In this section, we briefly introduce key-value store terminology and concepts as

used in this chapter. Key-value stores (KVSs) are a class of storage systems that

handle data as ⟨ key, value ⟩ pairs. The basic operations KVSs implement are put, get,
delete, and optionally update [24, 38, 91]. To access KVSs, two designs have emerged,

KVS servers and embedded KVSs. A server-based KVS stores and synchronizes state

that can be globally accessed bymultiple applications running on different machines.

It communicates with the applications via a network client/server API. Popular

KVS servers are Redis [128] and memcached [109]. If the KVS is used by a single

application, embedded KVSs provide a more lightweight alternative to server-based

ones. These KVSs are embedded in the application and accessed using library

function calls. Popular embedded KVS are RocksDB [38] and FASTER [24].

A main advantage of KVS servers is that they are self-contained systems. This

provides them with full system control, i.e., among others, they manage their own

threads, concurrency, and I/O queues. However, this control entails an abstraction

cost via, e.g., a network-based interface. On the other hand, embedded KVSs are

controlled by the user within an application, which results in less communication

overhead compared to network-based access and allows more fine-tuning. Yet,

this control comes at the risk of incorrect usage, which might impact correctness

and performance. To provide good performance and control, embedded KVS must

design their interfaces as simple as possible without requiring the user to strictly

follow patterns or complex procedures in case of, e.g., partial failures or system

restarts. In this work, we focus on the design of such an embedded KVS and simple

interface to allow the user to fully utilize PMem without high network overhead.

We present such a design and implementation in Viper.

4.3 Viper: A Hybrid Key-Value Store
In this section, we present Viper, a hybrid PMem-DRAM KVS that leverages PMem-

specific access patterns for efficient data storage and retrieval. Viper avoids expen-

sive disk access by persisting data in PMem while keeping an in-memory index to

harness DRAM’s lower random access latency over a fully PMem-based approach.

55

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

We first discuss our hybrid design in Viper in Section 4.3.1 followed by a description

of Viper’s core components in Section 4.3.2.

4.3.1 Hybrid Design
To fully utilize both DRAM’s and PMem’s strengths, we propose a hybrid storage

approach in Viper. Viper consists of a volatile hash index located in DRAM and

persistent data blocks located in PMem. While Optane DIMMs can act as a drop-in

replacement for SSDs to achieve data persistence, to fully leverage the performance

of PMem, we need to understand its storage layout and beneficial access patterns.

All data is durably stored in persistent memory and the hash index contains only

references to the storage location.

Hybrid storage models have also been proposed in previous work on index

structures [123, 148] with the concept of selective persistence. The idea behind

selective persistence is to store only the data required to rebuild the entire system

state in persistent memory and keep a dynamic recoverable state in volatile memory.

Viper is designed to be an embedded KVS similar to RocksDB [38] or FASTER [24]

and not a KVS server. Thus, users interact directly with the database in the same

process without any network interface.

PMem Access Patterns. Initial studies on real PMem show complex perfor-

mance characteristics, which often lead to low bandwidth and high latency [71, 147]

In Viper, we propose three core design choices for PMem-specific access patterns

that significantly impact its performance on real hardware:

1) Direct PMem writes. As sequential PMem writes are faster than previously

assumed in simulations, Viper writes all data directly to PMem without an

intermediate DRAM buffer.

2) Uniform thread-to-DIMMdistribution. Viperminimizes the thread-to-DIMM

ratio for inserts by assigning threads to different memory regions.

3) DIMM-aligned storage segments. Viper stores data in DIMM-boundary

aligned pages (VPages) to balance DIMM contention with parallelism. Smaller

pages result in more threads accessing the same DIMM and larger pages result

in a single thread accessing multiple DIMMs, both leading to a worse, and thus

disadvantageous, thread-to-DIMM ratio [147].

We demonstrate the impact of these design choices in Figure 4.1 (see Section 4.5.1

for our system setup). We perform 64 Byte stores followed by clwb and sfence
with a varying number of threads in PMem and DRAM. Figures 4.1a and b show that

56

Viper: A Hybrid Key-Value Store Section 4.3

1 4 8 16 32

Threads

0

200

400

600

800
L
a
t
e
n
c
y
i
n
n
s a) Sequential Write

DRAM

PMem

1 4 8 16 32

Threads

0

200

400

600

800
b) Random Write

1 4 8 16 32

Threads

0

200

400

600

800

L
a
t
e
n
c
y
i
n
n
s c) Grouped Seq. Write

1

4

8

DRAM

16

32

0 1024 2048 3072

Offset in Byte

0

100

200

300

+9%
+18%

+8%

d) Offset Seq. Write

Figure 4.1: Write latency for various write patterns to DRAM and PMem.

sequential writes have a similar latency for PMem and DRAM (maximum 2x higher

for 32 threads), while random writes perform significantly worse on PMem even for

low thread counts. This is due to Optane’s internal write-combining buffer, which

combines adjacent writes to reduce expensive media flushes but cannot combine

small random writes, causing high write amplification. From this observation, we

derive our direct PMem writes design.

Figure 4.1c shows the importance of an even distribution of threads across all

DIMMs. We distribute the threads across k memory regions (1 GB each), represent-

ing log files, to which they write sequentially. Using 1 log file (denoted as 1 in the

plot), all threads write adjacent cache lines, i.e., thread 1 writes bytes 0–63, thread

2 writes 64–127, and so on. When using the same number of threads and logs, each

thread has its own disjoint memory region. With more logs, fewer threads share a

memory region and evenly distribute across the DIMMs. The poor performance

of 1 log is caused by all threads operating on a single DIMM (32 × 64 Byte = 2048

Byte) and thus, disregarding the inherent parallelism of interleaved PMem. We see

a performance increase when using more logs as the threads profit from PMem’s

parallelism by writing to varying locations evenly distributed across DIMMs. From

this observation, we derive our uniform thread-to-DIMM distribution design.

Finally, Figure 4.1d shows the impact of storage-aligned access. In this benchmark,

we let each thread write 4 KB sequentially and alter the alignment of the writes.

We see that 4 KB aligned writes (offset = 0) achieve the lowest latency, while a 2 KB

offset has an 18% higher latency. This is again caused by the necessity of accessing

57

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

Figure 4.2: Viper’s storage aligned with 4 KB PMem layout.

two DIMMs to write 4 KB instead of only one. From this observation, we derive

our DIMM-aligned storage segments design.
Volatile Index. Our evaluation of real PMem hardware shows that random op-

erations have a significantly higher latency than sequential ones and achieve lower

bandwidth (see Figure 4.1 and Chapter 3.3.2). Thus, we avoid (possibly multiple)

expensive random operations to the hash index by locating it in DRAM. Addition-

ally, the efficient design and implementation of hash maps in DRAM are widely

studied [85, 94, 105, 133], allowing us to fully take advantage of these concepts.

Persistent hash maps, on the other hand, have only recently been introduced [101,

113, 114, 131] and show lower performance than DRAM-based ones. Furthermore,

due to the persistence of every operation in the map, complex logic is required

to avoid concurrency and memory issues, e.g., persistent memory leaks, invalid

pointers, and blocked persistent locks. For our implementation of Viper, we build

on CCEH [113] and use it in DRAM instead of PMem. CCEH uses an extendible

hashing approach, thus allowing for dynamic resizing without an expensive full

table rehashing. As we use the volatile index to store offsets to PMem locations, we

refer to it as Offset Map in the remainder of this work.

Persistent Data. As our goal is to persist all data in Viper, we need to store

all key-value pairs on a durable storage medium. We choose Intel’s Optane DC
Persistent Memory [69] in our implementation. In Viper, we write all records directly

to PMem-based storage segments (design choice 1). Viper’s main storage segments

are called VPages and contain the individual key-value records as well as some

metadata. Figure 4.2 shows how we align VPages with the layout of the underlying

PMemDIMMs (design choice 3). We assume a system configuration with six DIMMs

per socket. However, Viper is configurable to work on any number of DIMMs.

We use Optane DIMMs in the interleaved mode to achieve a higher degree of

parallelism [147]. In the interleaved mode, data is striped across all DIMMs in 4 KB

pages. We exploit this striping by aligning VPages to the 4 KB page boundaries.

58

Viper: A Hybrid Key-Value Store Section 4.3

Figure 4.3: Viper’s architecture. VPages store key-value records in PMem (right). The

Offset Map stores (key, record-offset) entries in a volatile hash index (left).

This allows us to access exactly one DIMM per VPage, thus reducing contention on

the DIMMs during parallel access (design choice 2).

4.3.2 Architecture
Viper consists of three main components, persistent VBlocks and VPages, as well
as an in-memory Offset Map. We show Viper’s core components in Figure 4.3. On

the right-hand side, we see Viper’s persistent storage segments (VPage) grouped

into VBlocks, located in PMem. On the left-hand side, we see Viper’s volatile Offset

Map, which acts as an index by storing the key and persistent storage location of

each record. In the remainder of this section, we describe the design of the three

core components in detail for fixed- and variable-sized records. We first describe

the VBlock and Offset Map, as these are identical for both variations, followed by

the fixed-sized VPage design and the variable-sized modifications.

Common Components

In this section, we present components that are identical for fixed- and variable-

sized records: the VBlock and Offset Map, as well as Viper’s metadata management.

VBlock. In Viper, we align VBlocks to the boundaries of the underlying inter-

leaved set of DIMMs, spanning exactly 24 KB. Each VBlock contains a fixed number

of VPages, one VPage for each DIMM, stored in an in-place array for efficient access.

VBlocks contain no logic themselves but simply act as a grouping of VPages to

reduce the bookkeeping overhead in Viper. Each VPage is 4 KB (DIMM-aligned)

and contains some metadata plus the actual key-value records stored in slots. They

59

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

are the actual storage units in Viper. To support larger key-value pairs, Viper scales

VPages to multiples of 4 KB and VBlocks to multiples of 24 KB, ensuring the same

4 and 24 KB alignment. For simplicity, we assume 4 KB VPages and 24 KB VBlocks

in the remainder of this work.

Offset Map. The Offset Map is the core volatile index that Viper uses to keep

track of all records. In Viper, the Offset Map is an in-memory, concurrent hash map.

When a record is inserted into Viper, it is first persisted in a VPage and then the

offset of the record is stored as the value in the Offset Map for the given key. The

offset consists of three parts: the VBlock id, the VPage id, and the record position in

the VPage. The record position depends on fixed- or variable-sized records. With

these three parts, Viper can uniquely locate any given record. Viper stores the

offset in a 64-bit Offset object, where the most significant 45 bits represent the

block id, the following 3 bit represent the page id, and the next 16 bit are used

for the record position. The bit-assignments may be modified in case the user has

specific knowledge of the expected workload, e.g., very large records or the number

of DIMMs varies significantly.

Analogously to previous work, we use fingerprinting in order to store keys larger

than 8 Byte in the Offset Map [101, 123]. Instead of storing the actual key in the

map, Viper stores the hash of that key and checks for equality only if the hash

matches. This significantly reduces the number of expensive comparisons with the

keys in PMem, as very few collisions are expected for 64-bit hashes.

Metadata Management. To grow, Viper allocates VBlocks in PMem and maps

them into the virtual memory space via mmap [112]. To keep track of the virtual

addresses, Viper stores a pointer to each VBlock in a list in DRAM. This allows for

easy access to an arbitrary VBlock by its implicit id, which is equal to the offset

in the list. Once the available VBlocks reach a certain configurable filling degree,

Viper allocates additional VBlocks and adds them to the list. Viper supports PMem

allocation from both devdax or an fsdax directory. Data is allocated in increasing

memory order (devdax) or increasing file names (fsdax) to guarantee ordering, thus

maintaining the VBlock order after a restart. To reduce the number of memory

allocations, large chunks (or files) are allocated, which contain 43690 VBlocks by

default (1 GB). Metadata recovery and mapping all data back into Viper’s virtual

memory space takes only a few milliseconds, as it mainly consists of mmap calls.

Fixed-Sized Records

We now present the VPage design for fixed-sized records, as shown in Figure 4.4 (a).

VPage Data. Viper stores the actual key-value records in VPages. Both the key

and the value are stored together in a single slot. The slot id is used as the third

60

Viper: A Hybrid Key-Value Store Section 4.3

(a) 200 Byte fixed-sized records.

(b) Variable-sized records.

Figure 4.4: VPage layout with example entries. Key-value records are stored consecutively.

part of the Offset Map entry (record position) for fixed-sized records. When using

the term key-value record, we refer to both the key and value together. The number

of slots per VPage depends on the record size, where larger records require more

space and thus fewer fit into the available 4 KB. Viper uses nearly all of the 4 KB to

store data, as only a few bytes are needed for metadata. We describe the calculation

for the number of slots with the metadata size below.

VPage Metadata. The metadata is stored in the first few bytes of the VPage.

It consists of a version lock byte and a bitset indicating which slots are free or

populated. Both concepts are also used in previous research on PMem data struc-

tures, e.g., in tree nodes [25, 123] or in hash buckets [101]. We use a lock byte to

handle concurrent access to the VPage, allowing only one thread to concurrently

modify its data. The lock is acquired and released via atomic compare-and-swap

operations (CAS). We thus avoid the use of heavy-weight mutexes at this point.

Even though there are persistent CAS implementations [143] that ensure correct

persistence-semantics, Viper uses regular in-memory CAS operations with less

overhead. The lock is only relevant during active use and is reset after a crash.

The bitset contains 𝑘 bits, one for each slot in the VPage. A set bit indicates that

the slot is occupied and contains data. An unset bit, in reverse, indicates that the

slot is free. This allows Viper to efficiently delete a record by setting the bit at its

slot position to 0.

VPage Slot Count and Metadata Size. The exact size of the metadata depends

on the record size, as Viper requires one bit per slot in the bitset. To determine

the metadata size, we first calculate the number of slots per page by dividing the

VPage size by the record size, ⌊𝑠𝑖𝑧𝑒𝑝/𝑠𝑖𝑧𝑒𝑟 ⌋ = 𝑛𝑢𝑚𝑠𝑙𝑜𝑡𝑠 . This is rounded down to the

nearest integer as we cannot have partial slots. To avoid an over-allocation of the

61

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

VPage, we need to check if the metadata still fits. The metadata size is calculated as

1 + ⌈𝑛𝑢𝑚𝑠𝑙𝑜𝑡𝑠/8⌉ = 𝑠𝑖𝑧𝑒𝑚 bytes, for the lock + bitset. We round up the bitset size, as

the underlying system cannot work on individual bits but requires full bytes. If the

data plus metadata is too large for the VPage (𝑛𝑢𝑚𝑠𝑙𝑜𝑡𝑠 ∗ 𝑠𝑖𝑧𝑒𝑟 + 𝑠𝑖𝑧𝑒𝑚 > 𝑠𝑖𝑧𝑒𝑝), we

reduce the number of slots by one. All unused space at the end of the VPage is left

as padding to keep the 4 KB alignment.

Variable-Sized Records

To support variable-sized records, the VPage-design needs to be modified, as shown

in Figure 4.4 (b).

VPage Data. Records are not stored in fixed slots, as their size is unknown a

priori. Thus, Viper uses all non-metadata bytes in the VPage as a log. Each record

is consecutively written to this log together with the respective key and value

length. The sizes are stored in a single 32-bit value (15 bits for key, 16 bits for

value) to allow for atomic updates. The least significant bit of the value indicates

whether the record is set (= 1) or deleted (= 0). The offset in the log is used as the

third part of the Offset Map entry (record position) for variable-sized records. For

key-value pairs larger than 4 KB, Viper dynamically uses an entire VBlock as a

single VPage. For even larger records, Viper writes the record across multiple large

VPages and marks these as overflow pages. Thus, large records do not impact the

design of Viper, as it still has unique VBlocks per client and equal distribution of

client threads to DIMMs.

VPage Metadata. As the VPage does not contain any slots, the free slot bitset is

removed. Instead, each VPage now contains a pointer to its next insert position, i.e.,

the tail of the log, and an 8-bit integer to track how much data has approximately

been deleted (i.e., metadata bit = 0) and needs to be compacted. The metadata size

is fixed for variable-length records at 10 Byte, allowing for 4086 Bytes of records

per VPage.

4.4 Key-Value Store Operations

In this section, we discuss the commonKVS operations put (Sec. 4.4.2), get (Sec. 4.4.3),
update (Sec. 4.4.4), and delete (Sec. 4.4.5), as well as space reclamation (Sec. 4.4.6) and

the recovery of an existing database (Sec. 4.4.7). Before discussing the operations,

we present the Viper client through which users interact with Viper (Sec. 4.4.1).

62

Key-Value Store Operations Section 4.4

Figure 4.5: Client requests new VBlock. Client #1 requests a new VBlock after a put to a

full one and then writes to the new VBlock.

4.4.1 Viper Client

Commonly in embedded KVSs, a database handle is created for a given file, which

either creates a new database if the file does not exist or opens the existing database.

This handle can be used by multiple threads to interact with the KVS, by issuing,

e.g., get or put requests. However, when the KVS does not control or own the

threads, the handle has to control external concurrent access. Examples for such

embedded KVSs are RocksDB [38] or LevelDB [43]. For put requests, this means

providing a new insert location for each request. This central synchronization point

quickly becomes a bottleneck, which we avoid in Viper by introducing a Viper
client.

As Viper is an embedded KVS, the client does not contain any network logic as

common in KVS servers. It is a light-weight object that exposes the KVS-operation

interface to the user and contains information on where to write future records to

reduce synchronization within Viper. In Figure 4.5 we show clients interacting with

Viper. In our example, three clients have been created. Each client is initialized

with its own VBlock (#1 → VBlock0, #2 → VBlock1, #3 → VBlock2), i.e., no two

clients write new records to the same VBlock. To indicate that a VBlock is currently

“owned” by a client, an owned_bit is set in the version lock of the first VPage.

This bit is used for space reclamation and recovery. The client then writes data

to its current VBlock/VPage and progresses the VPage until all VPages are full.

Once a client cannot put data into its VBlock because it is full 1 , it requests a

new VBlock from Viper 2 . Viper then returns the next block to the client and

atomically updates the next_block and the next_page counters. Viper stores the

next_block and next_page counters in a single 64-bit variable that can be updated

atomically with a compare-and-swap operation. The next_page counter is chosen

63

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

randomly to achieve a uniform distribution across DIMMs. When the client receives

its next block, it updates its references and inserts the record into the new VPage

3 . This approach significantly reduces the coordination overhead within Viper,

as it does not need to issue a new write location for each put. If a VBlock fits, e.g.,

100 records, the overhead is reduced by 100x, as a client only needs a new location

every 100 writes.

As Viper supports space reclamation (see Section 4.4.6), it also keeps track of

free blocks in a concurrent queue. If a free block is present in the queue, it is given

to a client for re-use rather than allocating a new client. In that case, the block is

removed from the queue and the next_block counter remains unchanged.

4.4.2 Put
To insert data into Viper, clients must issue a put(Key, Value) request. The

pseudo-code for this is presented in Listing 4.1. The client first acquires the VPage

lock for its current VPage in a blocking call (Line 1). To acquire exclusive access,

the version lock is atomically compare-and-swapped with a +1 increment to an

odd-number, e.g., from 0 to 1. If a client encounters an odd-numbered lock, it retries

its operation. Once the client has exclusive access to the VPage, it searches for the

next free slot (Line 2). If the VPage is full, the client releases the lock, updates its

page and block information, and retries the put operation (Lines 3-6). To update

the page and block information, it either progresses to the next VPage in its current

VBlock or it requests a new VBlock from Viper.

If there is a free slot in the current VPage, the client stores the record in the

free slot and persists it (Lines 8-9). To write the current cache line to PMem, the

Persistmethod issues a clwb call to the underlying system followed by an sfence
call. The sfence enforces correct ordering guarantees, i.e., after the call, the data is
guaranteed to be persisted. Only after the data is persisted does the client update

and persist the bitset (Lines 10-11). The order here is important, as the bitset

becomes the ground truth for recovery [101, 123]. If the bitset indicates a populated

slot but the data is not properly stored, Viper is in an inconsistent state.

Once the data is persisted, the client inserts the new offset into the Offset Map.

If the Offset Map contained an entry for the key, the old value is overwritten and

the client must ensure that the record at the old location is deleted by setting

the corresponding bit to 0 (Line 15, see Section 4.4.5). As the Offset Map handles

concurrency, it guarantees that in the event of concurrent writes to the same key,

one client will see the value added by the other client as an old offset, thus deleting

the other client’s value. Finally, the client releases the lock on the VPage and

returns a Boolean indicating whether a new key was inserted or an existing one

64

Key-Value Store Operations Section 4.4

Listing 4.1: Viper’s put(Key k, Value v)

1 AcquireVPageLock(v_page);
2 free_slot_idx = FindFreeSlot(v_page.slot_bitset);
3 if (free_slot_idx == max_bitset_size) {
4 ReleaseLock(v_page); GetNewVPageOrVBlock ();
5 return Put(k, v);
6 }
7

8 v_page.slots[free_slot_idx] = {k, v};
9 Persist(v_page.slots[free_slot_idx]);
10 v_page.slot_bitset[free_slot_idx] = 1;
11 Persist(v_page.slot_bitset);
12

13 offset = {block_num , page_num , free_slot_idx };
14 [is_new , old_offset] = offset_map.Insert(k, offset);
15 if (! is_new) DeleteOldRecord(old_offset);
16

17 ReleaseLock(v_page);
18 return is_new;

was overwritten (Lines 17-18). The lock is released by atomically storing another

+1 increment, thus, making the lock even-numbered again.

Crash Consistency If a crash occurs between persisting the bitset and the

deletion of an old record, Viper contains two values for the same key. To guarantee

a deterministic recovery and thus ensure atomic writes, Viper selects the greater

⟨ block_id, page_id, slot_id ⟩ in case of a conflict. We note that this is not necessarily

the newer value, as “old” block ids are reused after reclamation but it constitutes a

deterministic tie-break during recovery. To ensure that the new value is not read

until it is guaranteed to be deterministically recoverable, clients hold the VPage

lock until the old record is deleted. In rare cases, this may lead to a deadlock, as two

clients might need to lock the same two VPages in reverse order. If a deadlock is

detected, i.e., the lock cannot be acquired in 𝑥 tries, the client adds the offset it needs

to delete 𝑂 to a global list. All clients in the deadlock continuously check this list

for offsets 𝑂′
that match their current VPage, delete the record at 𝑂′

, and remove

it from the list. If a client notices that 𝑂 was deleted from the list, the deadlock is

solved and it can return after unlocking its VPage. In a micro benchmark with 50

million mixed operations, Viper encounter only two such deadlock-like scenarios.

Variable-Sized Records. Inserting variable-sized records follows a similar pro-

cedure as shown in Listing 4.1, but the actual writing of the data is different. To

insert a variable-sized record, the client first retrieves the next_insert_position

65

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

from the VPage metadata. It then writes the record to PMem at the given location

followed by a Persist call. Only then does it write the record’s metadata in front

of the record. This order guarantees that if the metadata is present, the record

is persistently stored. This is identical to persisting the bitset after the slot for

fixed-sized records. When a record does not fit into a page, the client checks if the

key without the value fits. If it fits, the value is written to the next page, and only

then is the key written with metadata indicating a value length of 0, which tells

Viper that the value is stored on the following page to ensure the same persistency

guarantees as above. If the key does not fit, the record is written to the next page

and the metadata is set to an invalid configuration on the current page, indicating

that no more data is present after this marker. After inserting the record, the

next_insert_position is updated to reflect either the end of the page or a new

position.

4.4.3 Get

To retrieve individual records from Viper, the client issues a get(Key) request. To

efficiently scale for read-heavy workloads, Viper uses lock-free reads [25, 101].

First, the client searches for the key in the Offset Map and returns an error if no

entry was found. The client then atomically reads the version lock of the VPage

that contains the record into 𝑙1. If 𝑙1 is odd-numbered, another client currently

holds an exclusive lock and the entire read is retried, as a VPage modification might

have altered the retrieved offset. In an unlocked state, the client reads the value

at the given offset. The pointer retrieval is a lookup in Viper’s VBlock list for the

offset’s block id, followed by direct accesses into that VBlock’s page list at the page

id and the VPage’s slots at the slot id. We note here that the VPage array within

a VBlock and the slots within a VPage are known at compile-time, thus allowing

the compiler to combine the latter two lookups into simple pointer arithmetic on

the VBlock pointer from the initial lookup. Before returning the value, it again

atomically loads the version lock into 𝑙2. If 𝑙1 = 𝑙2, the VPage was not modified

and the value can be safely returned. If 𝑙1 ≠ 𝑙2, the entire read operation is retried,

as a conflict might have occurred.

Retrieving variable-sized records follows the same steps, but the actual record

lookup differs slightly. Instead of reading a record from a given slot, it first reads

the record length at the given offset in the VPage log and then retrieves the value

according to its size.

66

Key-Value Store Operations Section 4.4

4.4.4 Update

In order to update a value in Viper, the user can call update(Key, UpdateFn),
where UpdateFn is an arbitrary function that receives a value and modifies it

atomically. As Viper does not copy the values, modifications are made in-place in

PMem. To avoid partial update anomalies, only atomic updates can be performed.

However, this allows the user to modify up to 8 Byte (or 16/32/64 with modern

AVX-512 CPUs) of a value in-place. This is useful to, e.g., update counters or other

individual fields in the value [20]. Updating in Viper is similar to get but instead of

returning the value if no version conflict occurred, the client acquires an exclusive

lock and applies the UpdateFn to the value. Thus, any subsequent operations are

aware that a modification was performed.

For non-atomic updates, the value must be re-inserted. To achieve this, the user

gets the value, creates a copy, modifies it, and finally calls insert for the same key

with the new value. This is a common approach in many KVSs [38, 43, 84, 102] and

Viper always falls back to this approach if in-place modifications are not possible.

This is also the approach for variable-sized records, as modifications in them might

change their size. In Viper, records are tightly packed in the log and do not allow

for any subsequent size variation.

Two main advantages of in-place updates over conventional copy-on-write are

avoiding serialization and fewer cache line flushes, i.e., only one Persist call is

needed in Viper as no metadata is updated. Also, recent work shows that in-place

modification is preferred over copy-on-write for PMem [90, 130].

4.4.5 Delete

To delete a record, the client issues a delete(Key) request. The client first looks
for the key in the Offset Map and returns false if it is not found. If it was found,

the client retrieves the VPage from the offset information and acquires its lock

to block other modifying access. In Viper, the actual record is not erased, but

the corresponding free slot bit is set to 0 and the bitset is persisted to make the

deletion durable. Then, the key is removed from the Offset Map before releasing

the page lock and returning a successful deletion. For variable-sized records, the

deletion bit is not set in the bitset but rather in the record metadata in the log. The

size information is not modified, as it is required to skip the deleted record when

scanning the VPage during recovery or compaction.

67

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

4.4.6 Space Reclamation

After various records have been deleted or re-inserted, the VPages contain many

free slots or tombstoned records in the log. In order to reuse this free space, Viper

runs a periodic background space reclamation process. In this reclamation, Viper

scans the bitsets of the VPages to see how many free slots are available. If the

number of free slots in a VBlock is higher than a configurable threshold and the

VBlock is not currently “owned” by a client, the VBlock is compacted into a new

VBlock, marked as free, and added to the free block queue. Compacting a VBlock

is equivalent to re-inserting each record in that VBlock. Thus, when compacting

many VBlocks, the records are tightly packed again. If a client reads a record that

is currently being compacted, it either reads the stale offset and retries because the

version lock of the compacted VPage has changed or it reads the new offset. Each

VPage is locked for the entire duration of its compaction to avoid modifications

throughout.

For variable-sized records, Viper checks the metadata of each VPage for the

approximate free space on this page. If the VBlock reaches a configurable threshold,

it gets compacted as in the fixed-sized process. After the compaction of a VBlock,

it is marked as free with a free bit in its first VPage’s lock byte. This allows Viper

to recognize free VBlocks during a recovery. This process can also be used to

deallocate VBlocks at the tail of the VBlock list and thus reduce its PMem footprint

after many records have been deleted.

4.4.7 Recovery

A persistent KVS needs to be able to recover from a crash or be re-opened after a

regular shutdown. In Viper, we handle both scenarios identically, as all required

metadata is continuously persisted during its normal operational mode. Viper stores

a small amount of metadata in PMem to keep track of the number of allocated

VBlocks, the number of used VBlocks, and the total memory-mapped size. Every

time new VBlocks are allocated in PMem, the metadata is updated to reflect the

total number of allocated blocks. Additionally, every time a new VBlock is assigned

to a client, the number of used blocks is incremented in the metadata.

When Viper is opened with an existing database, it checks this metadata and

prepares for a recovery based on it. Viper maps existing VBlocks into its virtual

address space and stores pointers to each VBlock, as described in Section 4.3.2. After

mapping all VBlocks, Viper checks for the number of used blocks and scans those

to retrieve the records in them. For each VPage, Viper checks which slots are set

(fixed-sized) or scans the log for non-deleted records (variable-sized) and inserts the

68

Evaluation Section 4.5

offsets into the map. This can be parallelized by assigning disjoint VBlock-ranges to

different threads. After scanning all VBlocks, the next_block counter in Viper is

updated to the highest used block_id + 1, so that new clients receive fresh VBlocks

(see Section 4.4.1).

4.5 Evaluation
In this section, we present the evaluation results of our implementation of Viper

compared against other KVSs. In Section 4.5.1 we describe our setup, followed by an

introduction of the other systems in Section 4.5.2. We present our Micro-Benchmark

results in Section 4.5.3 and our YCSB evaluation in Section 4.5.4.

4.5.1 Setup and Methodology
We run all experiments on an Intel Xeon Gold 5220S CPU server and pin all threads

to one socket to avoid cross-socket data access. The CPU has 18 cores (36 logical

cores via hyperthreading). The socket is connected to 750 GB PMem, in six 128 GB

Intel Optane Persistent Memory DIMMs, and to 96 GB DRAM. To access the Optane

DIMMs directly, we use devdax mode. We prefill the stores with 100 million records

before performing the benchmark operations and use 16 Byte keys (e.g., a UUID)

and 200 Byte values, as these represent common sizes in real-world KVSs [20].

We implement our prototype of Viper in C++, compiled with GCC 9.3 on Ubuntu

20.04. We use and modify the CCEH map [113] for the offset map and low-level

libpmem (v1.10) [124] calls to persist data in PMem. Our code is open-source and

available on Github
10
.

4.5.2 Other Systems
We evaluate Viper against six other systems to show the impact of various de-

sign choices in Viper: FASTER, pmem-rocksdb, Dash, pmemkv, µTree, and Cross-
Referencing Logs. FASTER [24] (v1.8.0) is a state-of-the-art embedded hash-based

KVS, which we run backed by PMem instead of SSD, making it a hybrid DRAM-

PMem system. We initialize FASTER’s hash index identically to the authors’ evalu-

ation with ∼ #𝑘𝑒𝑦𝑠/2 hash buckets, resulting in a 2 GB index. We set the log size to

6 GB, which is ~1/4 of the total raw data size. pmem-rocksdb [103] is a modified

version of RocksDB to work explicitly with PMem by optimizing SSTables for and

placing the WAL on it. We run pmem-rocksdb with the same configuration as the

10 https://github.com/hpides/viper

69

https://github.com/hpides/viper

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

authors. These comparisons show the need for new PMem-aware designs instead

of drop-in replacements and minor modifications.

We also compare Viper against two PMem-only setups to show the benefit of a

hybrid design. As proposed in previous work, index structures can be used together

with a persistent allocator as a KVS [101, 123, 148]. Dash [101] is a state-of-the-art

PMem-optimized hash index that we pair with PMDK’s persistent allocator [124].

A second PMem-only system we evaluate is Intel’s hash-based pmemkv [125] (v1.4),
which we run with the cmap backend [70, 126].

We also evaluate Viper against two hybrid PMem-DRAM systems. µTree [25]
is a state-of-the-art hybrid BTree implementation that natively supports large

values, making it suitable for a KVS use-case. We note that the performance of a

BTree is expected to be slightly lower for single record operations, due to sorting

overhead for additional range-query support. Cross-Referencing Logs (CRL) [57]
were proposed to bridge the gap between volatile and persistent KVSs by persisting

cross-referencing logs between two KVSs, one in DRAM and one in PMem. As

CRL is not publicly available, we implement it (CrlStore) with Intel’s volatile TBB

concurrent hash map as the DRAM KVS [70] and the persistent map as the PMem

KVS [126], which both fulfill the per-record locking requirements of CRL. As CRLs

require front- and backend threads, we use a 1:1 mapping for all write operations,

limiting our results to 18 threads in the plots. We do not employ a dynamic mapping,

as proposed by the authors, because the backend threads constitute the bottleneck

in our experiments. For get requests, we use only frontend threads.

4.5.3 Micro Benchmarks
In this section, we evaluate Viper’s performance through various micro benchmarks.

To this end, we discuss the performance of the four core KVS operations, the impact

of different record sizes and variable-length records, followed by the systems’

memory consumption. We then evaluate Viper-internal design choices by showing

the impact of in-place updates and of data placement on DRAM or PMem, followed

by an operation breakdown, space reclamation impact, and recovery performance.

Key-Value Store Operations

To understand the throughput of Viper, we compare it against the other KVSs for

the core KVS operations insert, get, update, and delete. We initially fill each KVS

with 100 million 216 Byte records (16 Byte key, 200 Byte value), before performing

50 million individual operations on them. Each client inserts consecutive keys

from a disjoint range. For update, get, and delete, we uniformly choose a random

70

Evaluation Section 4.5

1 4 8 16 24 3236

Threads

0

3

6

9

12

15

T
h
r
o
u
g
h
p
u
t

(
M
o
p
s
/
s
)

(a) Put

1 4 8 16 24 3236

Threads

0

10

20

30

(b) Get

1 4 8 16 24 3236

Threads

0

3

6

9

12

15

T
h
r
o
u
g
h
p
u
t

(
M
o
p
s
/
s
)

(c) Update

1 4 8 16 24 3236

Threads

0

3

6

9

12

(d) Delete

Viper

Dash

pmemkv

FASTER

µTree

CrlStore

PMem-RocksDB

Figure 4.6: Core KVS operations. Viper scales better than the other persistent KVSs for

(a) put due to efficient data layout and thread distribution, (b) get due to direct storage

access, (c) update because of in-place modifications, and (d) delete due to minimum writes.

key in each call. We use a fresh KVS for each operation to avoid unintentional

caching effects. For all get operations, we explicitly read the value to ensure that it

is accessed from the underlying medium and not just pointed to.

The results are shown in Figure 4.6. In (a), we see that Viper’s insert throughput

scales well with the number of threads due to its efficient sequential access across

multiple DIMMs via the Viper clients, reaching a peak of 15 million puts/s with

36 threads. The PMem-optimized Dash and µTree also scale but achieve only

~4 Mops/s. Both are limited by the record allocation outside of the actual index

structure, which shows the need for a more structured insert mechanism. FASTER

performs better than Viper for few threads, as the data is initially written to DRAM

and is not persisted. However, after 8 threads its performance decreases. Once

FASTER’s DRAM-based log is full, it writes old segments to PMem to free space.

This becomes a bottleneck, as the log needs to wait until the segment was copied

and flushed before it can allocate a new segment to write to. The other systems

do not scale well and achieve fewer than 1 million inserts/s due to unoptimized

random hash map operations performed in PMem.

Retrieving records (b) is split into two groups. FASTER, pmemkv, and RocksDB

do not perform well for random get request due to inefficient lookups in PMem,

71

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

all peaking below 4 Mops/s. FASTER and RocksDB are optimized for access from

disk-storage, disregarding random access capabilities PMem, while pmemkv is built

for PMem but with an unoptimized hash index. The other group of systems are

optimized for PMem and achieve peaks between 25 and 35 Mops/s. This shows that

get performance heavily depends on the chosen (hash-) index implementation and

that the DRAM-based index in Viper does not significantly outperform PMem-based

Dash. We plan to investigate the use of different index types in Viper in future

work, as a recent study shows that, e.g., Dash achieves significantly higher lookup

rates than CCEH [55]. In Figure 4.11, we show that DRAM-based Viper achieves

~50 Mops/s, indicating that CrlStore is limited by the TBB concurrent map in this

evaluation.

In real world use-cases, record updates are often small modifications, e.g., 8 Byte

counter updates [20]. In such a workload (c), we see that Viper outperforms all

other systems due to its atomic PMem-aware in-place modification compared to

the read-modify-write semantics of the other systems. We discuss the different

update semantics in Viper in more detail in Section 4.5.3.

Deleting (d) records behaves similarly to updating in Viper, as it performs a key

lookup followed by a small write, i.e., invalidating the slot. Other systems’ delete

performance is higher than their respective update performance, as many use a

tombstone invalidation without the need to insert a new entry.

Our evaluation shows that for inserts, a PMem-specific sequential write pattern

considerably improves the performance over batched disk-based approaches or

random PMem allocations by 4–18×. Also, the update performance of Viper is

superior, as it can perform in-place updates in persistent storage, which other

systems cannot. For data retrieval, Viper performs on par with comparable systems.

As PMem-RocksDB performs worse than all other systems, we omit it from future

evaluation due to limited space.

Key-Value Record Size

To understand the impact of record sizes, we evaluate all systems with varying

key and value lengths. We evaluate the impact of very small records (8 Byte key,

8 Byte value), more common sizes (16 B, 100 B) and (32 B, 500 B), as well as large

records (100 B, 900 B). We define a fixed prefill data size of 20 GB, which we divide

by the record sizes to get the number of records to prefill each system with, i.e.,

20 𝐺𝐵/16 𝐵 = 1.25 billion 16 Byte records and 92/37/20 million 216/532/1000 Byte

records. We then insert 10 GB in the same manner, i.e., exactly half as many records

as the prefill. In a second workload, we issue 50 million get requests on a prefilled

72

Evaluation Section 4.5

Figure 4.7: Key-value size impact.

KVS. All runs are performed with 36 threads. We omit µTree, as it does not support

large keys.

The results are shown in Figure 4.7. For 16 Byte records, Viper achieves ~20 M

puts/s and decreases linearly with an increasing record size, as it becomes PMem

bandwidth-bound. FASTER also achieves nearly 20 M puts/s for 16 Byte records, as

many of them fit into the DRAM-based log and are not persisted. With increasing

record sizes, FASTER’s performance drops to under 2 Mops/s as fewer records fit

into the log, requiring more frequent PMem flushes. From this result, we see that

efficient access patterns to PMem, as employed in Viper, have a higher impact on

the overall performance than simply reducing the number of PMem flushes, as

done in FASTER, via a DRAM buffer followed by a large PMem flush. We note

that especially for larger records, the impact of a single additional metadata flush

decreases, as multiple flushes are required for the record alone.

Dash benefits from 16 Byte records, as it does not require an extra memory

allocation outside of the index. However, its insert performance is only about

50% of Viper’s, which demonstrates the high overhead of random writes to PMem

over sequential ones. For larger records, random memory allocations become the

bottleneck in Dash. Both pmemkv and CrlStore cannot insert the 1.25 billion 16

Byte records as they run out of memory. We note that this behavior is expected,

as explained in the PMDK documentation: “allocations of a size less than 64 Bytes

[are] extremely inefficient and discouraged.”
11

Thus, both pmemkv and a default

allocator KVS are not suitable for small records, and for larger records, they are

limited by their inefficient PMem writes.

The get performance trend of Viper is similar to the insert performance, where

access to larger records is bandwidth-bound. Surprisingly, 16 Byte gets are less
efficient than 216 Byte, as CCEH performs better with fewer entries. Dash retrieves

11 https://pmem.io/pmdk/manpages/linux/v1.8/libpmemobj/pmemobj_alloc.3

73

https://pmem.io/pmdk/manpages/linux/v1.8/libpmemobj/pmemobj_alloc.3

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

Figure 4.8: Variable-sized ∼216 Byte records.

16 Byte records very efficiently, as the values are stored directly in the map without

indirection. For larger records, its performance is also bandwidth-bound. CrlStore

exhibits a consistently high get performance, as all requests are answered from

DRAM without PMem access. Both FASTER and pmemkv show the same low

performance as in the previous section due to inefficient access.

Variable-sized Records

In this benchmark, we evaluate the impact of variable-sized records on the perfor-

mance of the systems. To this end, we prefill 100 million records of about 216 Byte,

with a normal distribution around 16 Byte for the key and 200 Byte for value size.

We then perform each 50 million puts and gets and measure the throughput.

The results shown in Figure 4.8 are in line with those of the core operations (see

Figure 4.6). For puts, Viper clearly outperforms the other systems due to its efficient

VPage design. Record retrieval also follows the same trend of fixed-sized records

discussed above. However, both put and get achieve lower overall throughput

compared to fixed-sized records. For fixed-sized records, the compiler generates

SIMD mov instruction, while regular mov instructions are used for variable-length.

The get performance is also lower for variable records, as they additionally require

more data reads than fixed records. Viper must read the size metadata before

retrieving the actual value, while fixed records require only pointer arithmetic due

to known offsets at compile time.

Memory Consumption

We evaluate the total DRAM and PMem consumption to better understand the

systems’ resource requirements. We fill each system with the default 100 million

74

Evaluation Section 4.5

Figure 4.9: Total memory. Figure 4.10: Update strategy.

records, i.e., 20.1 GB raw data (1GB = 2
30
B). We measure the DRAM and PMem

consumption with Intel’s VTune12, pmap13, and pmempool14.
The results are shown in Figure 4.9. Viper consumes 21.2 GB of PMem and 2.3

GB of DRAM. The DRAM consumption is attributed nearly completely to the offset

map. FASTER consumes slightly less memory overall but significantly more DRAM

due to its volatile log, which holds a large part of the data. Dash and µTree both

require 23.8 GB for the data via the allocator, being ~10% less efficient than Viper.

However, Dash requires only an additional 2.1 GB PMem for its index while µTree

requires nearly 9 GB of DRAM for its tree index. pmemkv is very inefficient in its

memory consumption, requiring more than twice the raw data size in PMem at 52

GB. In our implementation, CrlStore requires 28 GB of DRAM and 41 GB of PMem,

as it needs to store each record twice.

DRAM is a scarce and expensive resource compared to PMem, with a capacity

of only about 1/8× on our server and a 9× higher $/GB ratio [3, 69]. Viper’s

DRAM-PMem ratio is ~1/10 for 216 Byte records and lower for larger keys due

to fingerprinting, i.e., the DRAM consumption depends solely on the number of

records. Thus, Viper efficiently manages DRAM and supports larger configurations.

Update Strategy

A recent study by Facebook shows that certain workloads consist of many small

updates, e.g., 8 Byte counter updates [20]. For these workloads, efficient in-place

modification significantly reduces read- and write-amplification. In Figure 4.10 we

show the advantage of in-place updates over copy-on-write (CoW) updates. When

atomically updating only 8 Byte of a value, Viper achieves more than 2× updates/s

12 software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

13 linux.die.net/man/1/pmap

14 pmem.io/pmdk/manpages/linux/v1.8/pmempool/pmempool-info.1.html

75

http://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
http://linux.die.net/man/1/pmap
http://pmem.io/pmdk/manpages/linux/v1.8/pmempool/pmempool-info.1.html

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

Figure 4.11: Viper versions.

compared to CoW. If an atomic update is not possible, Viper still outperforms the

other systems when reading, modifying, and re-inserting the value (cf. Fig 4.6).

Recent work [90, 130] has also shown the advantage of in-place updates, thus,

supporting larger in-place modifications poses an interesting challenge for future

work.

Viper Versions

In Figure 4.11, we evaluate four Viper versions to understand the impact of data

placement in our design, i.e., by placing data + index in PMem or DRAM, by placing

the data in PMem and the index in DRAM (Viper), and by using unaligned VPages

in PMem shifted by 2048 Byte (Unaligned). We run the experiments with 36 threads.

This evaluation supports our design choice of DIMM-aligned storage, as unaligned

writes reduce put performance by 11%, due to a worse thread-to-DIMM distribution.

Random gets are affected less than 1%, as they are point lookups that rarely cross

DIMM borders.

Placing all data in PMem achieves only ~1/3× performance of the hybrid approach,

clearly showing the advantage of a hybrid design when aiming for higher through-

put. In Figure 4.12, we see that 60% of a put are already spent in PMem. Adding

the index to PMem increases the absolute time spent on Offset Map operations and

decreases PMem bandwidth due to inefficient access.

On the other side, hybrid Viper achieves ~2/3× of a DRAM-only Viper. The 1.4

µs spent in PMem for put are now approximately halved (cf. Fig 4.1a), reducing the

put duration to ~1.6 µs, allowing for ~22 Mops/s. Similarly, the time spent fetching

data from PMem is reduced by 2.5×, allowing for ~50% more ops/s. This evaluation

shows that a hybrid approach significantly outperforms a PMem-only one, while

the cost of data persistence is only about 33%. To further close the gap between

76

Evaluation Section 4.5

Figure 4.12: Operation breakdown.

PMem- and DRAM-based storage, we plan to investigate caching strategies in

DRAM in future work.

Operation Breakdown

To better understand the individual operations, we break them down into common

sub-parts. We prefill Viper before performing 50 million operations with 36 threads.

We split the operations evenly into a mixed 25%-each workload. We normalize the

runtime of each operation to 1 and present the time spent on PMem access, Offset

Map access, and VPage fetching/locking.

The results are shown in Figure 4.12. For put, we see that most of the time (~60%)

is spent on writing the record to PMem. Due to its VPage and client design, very

little time is spent on locking and fetching the VPage, as it is cached in the client.

As PMem-write speeds are close to those of DRAM, Viper makes good use of the

time spent on inserting. However, adding random PMem writes, e.g., in a persistent

index, might significantly impact the performance benefits gained by the sequential

VPage writes.

Both updates and deletes require ~30% of the operation time to initially fetch

the required VPage and lock it. The majority of the time is then spent in the map,

which also includes fingerprint lookups in PMem, to retrieve the correct record

offset. The final record update/invalidation is only a small part of the operation.

Retrieving data is similar to updates and deletes, in that it initially requires ~20%

to fetch the VPage (but not lock it). Again, the majority (> 50%) is spent in the

map lookup and fingerprint resolution. Finally, compared to updates/deletes, 20%

is spent on retrieving the actual record and copying it to DRAM.

This breakdown shows that Viper efficiently handles the core operations. The

77

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

Figure 4.13: Space reclamation.

DRAM-based index access takes up a significant portion and Viper might benefit

from different index designs, which we plan to investigate in future work.

Space Reclamation

To evaluate the impact of space reclamation on insert and get workloads, we prefill

Viper with 216 Byte records and randomly delete 33% of the records without space

reclamation. We then manually trigger a compaction of all VBlocks and start 32

parallel threads that put or get records.
In Figure 4.13, we show that running space reclamation in the background has

only a marginal impact on the performance of read workloads, i.e., ∼2% and no

impact on write workloads, as each client inserts records independently and Viper

reuses existing VBlocks without new allocations. Thus, space reclamation should

be used to reduce the PMem footprint if free CPU resources are available. If Viper

is not run at capacity, reclamation can be parallelized to reduce its runtime or a

higher threshold can be set to avoid reclaiming every deleted record.

Recovery

As a persistent KVS should be able to restart after a crash or shutdown, we evaluate

Viper’s recovery performance. We prefill 100 million 216 Byte records and recover

using a varying number of threads. A single thread requires 38 seconds to fully

restart Viper. More threads reduce the recovery time to 19/10/5/4 seconds with

2/4/8/16 threads. 36 threads recover Viper in 2.3 s.

A disadvantage of a hybrid KVS is that the volatile index needs to be rebuilt

when restarting. For a very large KVS, e.g., 1 TB, this can take up to 2 minutes.

In Viper, we optimize for the average case of a running database, i.e., improve

put/get performance instead of the worst case, i.e., a crash. However, recovery time

78

Evaluation Section 4.5

1 4 8 16 24 36

0

5

10

15

20

L
a
t
e
n
c
y

(
µ
s
/
o
p
)

(a) UNI. R50:W50

1 4 8 16 24 36

0

5

10

15

20
(b) UNI. R10:W90

1 4 8 16 24 36

0

5

10

15

20
(c) ZIPF R50:W50

1 4 8 16 24 36

0

5

10

15

20
(d) ZIPF R10:W90

1 4 8 16 24 36

0

10

20

30

T
h
r
o
u
g
h
p
u
t

(
M
o
p
s
/
s
)

(e) UNI. R50:W50

1 4 8 16 24 36

0

10

20

30
(f) UNI. R10:W90

1 4 8 16 24 36

0

10

20

30
(g) ZIPF R50:W50

1 4 8 16 24 36

0

10

20

30
(h) ZIPF R10:W90

Threads

Viper Dash pmemkv FASTER µTree CrlStore

Figure 4.14: YCSB latency and throughput for mixed read/write (read-ratio:write-ratio)

uniform (UNI.) and Zipfian (ZIPF) workloads.

is an important aspect of KVSs and we plan to investigate the trade-off between

operational and recovery performance in future work.

4.5.4 YCSB
In this section, we evaluate Viper and the other systems with the widely used

Yahoo Cloud Serving Benchmark (YCSB) [29]. We discuss latency and throughput

as both are important metrics depending on the exact application, as well as mixed

workloads. We split our evaluation along three axes, i) latency and throughput

(top/bottom row), ii) uniform and Zipfian distribution (left/right half), and iii) 50:50
and 10:90 read:write workloads (left/right quarter). As YCSB is Java-based and Viper

does not offer a network interface, we generate the workloads (8 Byte keys, 200

Byte values) using YCSB and then map them into our C++ benchmark for execution.

We show the average latency in microseconds measured with HdrHistogram [51]

and the throughput in million operations/s.

The results are shown in Figure 4.14. We first look at the latency measurements

in the top row, i.e., (a) – (d). We see that Viper has a very low average latency for

all four workloads. It increases from 1.2 µs with one thread to a maximum of 2 µs

with 36 threads. The Zipfian workloads show a slightly lower latency, due to better

caching effects. Dash and µTree have similar latency for all workloads, which is

3–5× higher than Viper’s and is mainly caused by the random record allocation.

CrlStore also shows low latency, as writes return as soon as they are persisted in

79

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

the log and frontend KVS. However, while the average latency is low, the 99.9𝑡ℎ-

percentiles of Dash/µTree/CrlStore in the uniform workloads reach 150/110/240 µs

compared to only 25 µs in Viper. pmemkv has significantly higher latency than the

other systems in all workloads and peaks at ~50 µs. For all systems, we see a slightly

lower latency in the 50:50 workloads compared to the write-heavy workloads as

get requests perform better in all systems. As FASTER is inherently asynchronous

and request completion intervals must be tuned by the user, we omit its latency as

it is not directly comparable.

The throughput of all systems follows the trend of the respective latency. For

Viper, we see slightly lower maximum throughput (~20 Mops/s) in the uniform

workloads than expected compared to the average of the individual put and get
operations as shown in Figure 4.6, which would reach ~24 Mops/s. In the realistic

YCSB workload, there is more mixed access to PMem, which decreases the band-

width [147], compared to our isolated micro benchmarks. The throughput of the

other systems is also similar to the numbers shown in Figure 4.6. However, all

systems are severely limited by inefficient insert operations. Dash and µTree peak

at ~8 Mops/s and the other systems reach fewer than 5 Mops/s.

YCSB shows that Viper consistently outperforms existing KVSs with an average

latency below 2 µs/op and a maximum throughput of over 19 Mops/s for both

write-heavy and mixed workloads. Overall, Viper’s throughput is significantly

higher in all workloads compared to the other systems, ranging from 3× to 27×,
making its design choices a good fit for real-world workloads.

4.6 Related Work
Viper builds on many techniques from prior KVSs, concurrent hash maps, pure

PMem data structures, and hybrid PMem-DRAM structures. In this section, we

briefly discuss related work.

Traditional Key-Value Stores. Popular in-memory KVSs such as Redis [128],

memcached [109], or MICA [95] optimize for a purely in-memory cache-like use

case for maximum performance. They do not persist the data in order to avoid

expensive disk access at the cost of data-loss after a system shutdown or crash.

Prior research in persistent KVSs is extensive and focuses mainly on avoiding

expensive read- and write-amplification to either SSDs, HDDs, or both [102, 110,

132]. Popular stores such as RocksDB [38], LevelDB [43], and Cassandra [84] use

log-structured merge trees with an in-memory table for insertions to reduce write-

amplification. To ensure the persistence of the data in the in-memory table, they

often employ file-based Write-Ahead-Logging (WAL), which quickly becomes a

80

Related Work Section 4.6

bottleneck. FASTER [24] is a modern KVS that uses an in-memory hash index and

a hybrid log to store records on disk with a volatile “tail” that allows for in-place

updates. Data in the volatile tail may be lost during a crash. While this approach

works very well in some use-cases, we aim for a stronger storage model in Viper,

in which data-persistence is guaranteed. With Viper, we propose a persistent KVS

that leverages PMem instead of disk to allow for efficient operation without central

log-based bottlenecks.

PMem-Based Key-Value Stores. Recent research also focuses on PMem-based

KVSs. RStore [91] is a hybrid PMem-DRAM KVS that focuses on reducing tail-

latency via asynchronousmessage passing and log-structured storage. FlatStore [26]

also employs a hybrid design based on record batching and cross-core stealing

from RDMA-connected request buffers. As RStore and FlatStore are designed as a

KVS server, their core design decisions are tightly coupled to networking, include

controlling their own threads, and reducing network overhead through user-space

networking. Viper’s design as an embedded KVS is significantly different, as it does

not require any network interaction and more importantly, it does not control its

own threads. HiKV [145] proposes a hybrid index for a KVS, where a hash index

is stored in PMem and a B-Tree is located in DRAM for efficient range queries.

However, as only the B-Tree is located in DRAM, all point queries are performed

on PMem essentially making it a PMem-only KVS compared to Viper. LibreKV [96]

also builds a hybrid index where data is initially inserted into a DRAM-based hash

map and later merged into a PMem-based hash map once it reaches a certain

filling degree. However, LibreKV does not offer consistency as all data in DRAM

is lost during a crash. NVLevel [98] is an LSM tree-based KVS that uses multiple

PMem-based memtables and compacts these into SSTables on disk once they are

full. NVLevel uses disk as its storage medium, thus being limited similarly to other

disk-based KVSs. In Viper, we propose PMem-specific access patterns for real

hardware to efficiently store and retrieve data directly in and from PMem.

PMem Data Structures. Several (hybrid) PMem data structures have been

proposed that introduce concepts used in Viper. Dash [101], NVTree [148], and
FPTree [123] use a lock-per-node approach in their hash map and B-Tree structures,

which we leverage in our VPages. Various work has focused on the advantages

of using a hybrid DRAM-PMem approach [25, 97, 123, 129, 156], from which we

derive our hybrid index-storage model. Lersch et al. [90] show that in-place updates

are preferred over copy-on-write for PMem and that fingerprinting is an effective

mean to reduce PMem lookups.

PMem Programming. Yang et al. [147], Izraelevitz et al. [71], and van Renen et

al. [138] show how access patterns affect the performance of PMem, which we rely

81

Chapter 4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store

on in Viper. PMDK [124] is the de-facto standard toolkit to interact with persistent

memory. We make use of its low-level methods in our implementation.

4.7 Conclusion
In this chapter, we present Viper, a hybrid PMem-DRAM key-value store that

leverages PMem-specific access patterns to efficiently store and retrieve data while

providing full data persistence. We propose three key design choices for hybrid

PMem-DRAM systems based on efficient PMem access patterns for real hardware,

direct PMem-writes, uniform thread-to-DIMM distribution, and DIMM-aligned storage
segments. We also discuss how to implement core KVS operations in such a system

with regard to correct persistence guarantees. Our evaluation shows the efficiency

of our design choices, as Viper significantly outperforms existing PMem-only,

hybrid, and disk-based KVSs by 4–18× for write workloads, while matching or

surpassing their get performance. For future work, we propose to investigate

alternative index designs and as PMem shows similar performance characteristics

to DRAM for certain access, we suggest to investigate moving parts of the index

to PMem. With Viper, we provide a foundation for future work on PMem-aware

storage systems and hybrid PMem-DRAM designs based on real PMem hardware

characteristics.

82

5 Darwin: Scale-In
Stream Processing

The majority of this chapter has been published in [16].

5.1 Introduction

Today’s large-scale Internet companies use stream processing engines (SPEs) to

process up to terabytes of incoming data per second [5]. However, recent studies

show that widely used SPEs such as Apache Flink and Spark Streaming do not

fully utilize the underlying hardware and are resource inefficient [151, 152]. Thus,

companies must scale-out their analytics jobs to millions of cores and tens of

thousands of commodity servers. At this scale, large infrastructure teams are

necessary to optimize analytics pipelines to maintain such a high level of processing

capacity.

We briefly illustrate the required scale with an example from Alibaba’s 2020

Singles’ Day. At its peak, they processed 4 billion events per second in a Flink cluster

with 1.5 million CPUs [5]. Running a general purpose VM (e.g., ecs.g6.4xlarge) with

16 cores on Alibaba’s cloud currently costs $1/hour [4]. Scaling this to 1.5 million

cores with 93,750 VMs totals at $93,750/hour or $2.25 million for the entire day,

just in nominal infrastructure cost.

To overcome resource inefficiency, new scale-up SPEs were proposed that, e.g.,

use query compilation [45], optimize for NUMA-awareness [153], or utilize GPU-

CPU co-processing [80], promising up to hundreds of millions of events per second

on a single node. To showcase the stark contrast of scale-up to scale-out system

performance, we assume a scale-up system with 100 million events per second in

our Alibaba example. With this system, the workload could run on 40 VMs with 52

cores each (e.g., ecs.g6.26xlarge at $6/h) for a total of $5760/day [4], resulting in a

nearly 400× reduction in price. While this calculation is simplified, it clearly shows

the huge gap between what is achieved with current scale-out SPEs and what is

possible with proposed scale-up systems.

However, the price to pay for this high performance and reduced infrastructure

cost lies in a reduced feature set. While scale-up systems utilize the hardware more

efficiently, they lack support for larger-than-memory state and crash recovery,

which limits their use in production setups. When the server or application crashes,

83

Chapter 5 Darwin: Scale-In Stream Processing

all state is lost and must be reprocessed. For workloads with small windows,

reprocessing includes only a few hours of old data. For unbounded or large-window

streaming jobs with global state, reprocessing may span days or weeks of old data,

which quickly becomes infeasible.

Regardless of scale, various business workloads require high availability and

cannot afford a full reprocessing after all in-memory data is lost due to a crash in

scale-up systems. This forces users to chose inefficient scale-out systems over highly

tuned scale-up SPEs, as production-grade scale-out systems support persistent,

larger-than-memory state and crash recovery. However, scale-out SPEs rely on slow

secondary storage for this, further decreasing overall system performance. Recent

developments in storage technology significantly improve the performance of

persistent storage devices, allowing us to reduce the gap between high-performance

and persistent state in SPEs. Persistent memory (PMem) offers byte-addressability

at close-to-DRAM speed with SSD-like capacity [31, 147]. Efficiently incorporating

PMem into streaming applications has the potential to radically shift the way SPEs

interact with persistent state, which is why we investigate integrating it for efficient

SPE state management in this chapter.

In our example, additional problems arise that limit the use of scale-up systems.

Even with modern high speed networks, it is currently not possible to ingest TB

of data per second into a single server. To overcome this limitation, large-scale

pipelines must build on scale-out systems, accepting the performance penalty they

entail. Thus, we see a huge performance gap between workloads that fit onto a

single server and can run in scale-up systems and ones that do not fit onto a single

server and must retreat to scale-out SPEs.

Following both efficient durable state management and hardware utilization, we

observe that systems support either one or the other, but not both. In this space,

we identify three key challenges current SPEs face: state management, resource
inefficiency, and overall system optimization. Overcoming these challenges heavily

impacts SPE performance and constitutes an important step towards industry

adoption and system maturity.

Based on these challenges, we propose scale-in stream processing, a new paradigm

that adapts to varying application demands by achieving high hardware utilization

on awide range of hardware setups, reducing overall infrastructure requirements. In

contrast to scaling-up or -out, it focuses on fully utilizing the given hardware instead

of demanding more or ever-larger servers. Scale-in processing combines scale-out

and scale-up concepts to efficiently process streaming data without sacrificing

larger-than-memory state or crash recovery. To scale-in, we adapt common scale-

up approaches that optimize for the underlying hardware and common scale-

out approaches that enable large state management. Compared to the current

84

Background Section 5.2

performance drop when switching from scale-up to scale-out SPEs, scale-in allows

for graceful scaling when workloads exceed single server by optimizing for both

single- and multi-node setups.

To this end, we introduce Darwin, our scale-in SPE prototype. Darwin leverages

modern storage and query compilation to handle large recoverable state and fully

utilize the underlying hardware. In summary, we make the following contributions.

1) We propose scale-in stream processing, a new paradigm that adapts to varying

application demands by achieving high hardware utilization on a wide range of

hardware setups, reducing overall infrastructure requirements.

2) We present Darwin, a scale-in SPE prototype that supports recoverable larger-

than-memory state while optimizing for high overall hardware utilization.

3) Based on Darwin’s design principles, we highlight the potential of PMem storage

engines for SPEs compared to traditional disk-based ones.

The remainder of this chapter is structured as follows. We briefly discuss some

background on stream processing in Section 5.2. In Section 5.3, we present current

challenges in SPEs. In Section 5.4, we present scale-in processing and its opportu-

nities, with a focus on state management with persistent memory. We introduce

our scale-in SPE prototype Darwin in Section 5.5 before concluding in Section 5.6.

5.2 Background
In this section, we briefly present some background on stream processing concepts.

Compared to traditional database workloads that answer continuously incoming

queries on a snapshot of data (data-at-rest), stream processing engines (SPEs) invert

this model and answer a set of pre-defined or standing queries on incoming data

(query-at-rest). Data is ingested by, e.g., scanning remote file directories [1] or by

reading frommessage queues such as Apache Kafka [83]. Once the incoming data is

processed, the results are again written to, e.g., files, external databases, or another

message queue. This chaining allows developers to create complex processing

graphs between SPEs and other systems.

SPEs commonly do not store all historical data but only the data that is relevant

to answering the current queries. Once data is no longer needed, it can be removed

to free up resources. As data is continuously ingested at high rates and queries may

span days, weeks, or months of data, it is important for SPEs to recover quickly after

a crash. If this is not supported, all data up until that point must be reprocessed to

85

Chapter 5 Darwin: Scale-In Stream Processing

recover the lost state, which quickly becomes prohibitively expensive, as state can

grow into the terabytes [33].

As aggregations on unbounded data streams is not always possible, SPE queries

often contain windows. These windows split the unbounded stream into a stream of

bounded chunks [13, 22, 93, 137]. On such a chunk, all aggregations are computable.

For example, calculating the median of an infinite stream is not possible, while

calculating the median of the past 60 minutes is. In line with our description above,

if the content of a window is no longer needed, it can be discarded. A common

window type is the tumbling window, which is defined via a window length 𝑙 . Every

𝑙 time units, the window is completed and the next window of length 𝑙 starts. An

simple example use of a tumbling window is to calculate the average stock price

of every hour, i.e., 𝑙 = 60 minutes. Depending on the application, more complex

window types can be used.

5.3 Current SPE Challenges
Recent work in stream processing focuses either on scale-up or scale-out concepts.

Scale-up systems optimize for high system utilization while scale-out systems focus

on application stability and efficient large state management. Both areas show

promising advancements, but combining them has received little attention. In

Section 5.3.1, we compare nine SPEs to see how they offer resource efficiency and

state management. From this comparison, we observe that numerous challenges

remain in the intersection of scale-up and scale-out systems. In Sections 5.3.2

to 5.3.4, we present three major challenges that current SPEs face: state management,
resource inefficiency, and overall system optimization.

5.3.1 Focus of Existing Systems
In this section, we briefly discuss the feature sets of common SPEs with regard to

statemanagement and resource efficiency. We show the comparison in Table 5.1. For

most features, we observe a clear distinction between scale-up and scale-out systems

(see Scale column in the table). While scale-out systems support recoverable, larger-

than-memory state with persistent or distributed state management, all scale-up

systems support only in-memory state without recovery. Instead, scale-up systems

offer optimizations for higher hardware resource utilization on a single server.

These include query compilation, NUMA-awareness, lock-free data sharing, and

GPU co-processing. Except for NUMA-awareness, none of these are exclusive to

large servers and are applicable optimizations also in commodity machines. They

86

Current SPE Challenges Section 5.3

Table 5.1: Feature set of existing SPEs with regard to state management, crash recovery,

and hardware resource efficiency.

System Scale Lang. State Recovery Hardware Efficiency

Flink [21] out JVM

in-memory

+ persistent

✓ –

Spark Streaming [150] out JVM

in-memory

+ persistent

✓ –

Drizzle [139] out JVM

in-memory

+ persistent

✓ –

Hazelcast Jet [42] out JVM

distributed

in-memory

✓
cooperative

multi-threading

Briskstream [153] up JVM in-memory –

NUMA-aware

scheduling

Saber [80] up JVM in-memory –

CPU/GPU

co-processing

Trill [23] up C# in-memory –

query compilation,

row/column layout

StreamBox [111] up C++ in-memory –

NUMA-aware,

lock-free

Grizzly [45] up C++ in-memory –

query compilation,

NUMA-aware

represent a large area of improvement for scale-out systems, which currently offer

very little hardware optimization.

Finally, all selected scale-out systems target the JVM with managed languages.

The group of scale-up systems is not as homogeneous, spanning managed languages

and C++. The recent scale-up SPE Grizzly demonstrates large performance gains by

using a system language such as C++, outperforming other scale-up and JVM-based

systems by orders of magnitude [45]. Thus, using a system-level language is highly

advantageous to achieve high utilization when targeting the underlying hardware.

Overall, we observe distinct characteristics for scale-up and scale-out systems.

While none of the scale-up systems offer recoverable state management, the scale-

out systems neglect hardware optimizations. To achieve high performance and

resource efficiency, future SPEs must focus on combining these features. Scaling-up

should not come at the price of data loss and scaling-out should not come at the

price of poor hardware utilization.

87

Chapter 5 Darwin: Scale-In Stream Processing

5.3.2 State Management
Recent scale-up SPEs focus on maximizing hardware utilization through, e.g., query

compilation [45], CPU-GPU co-processing [80], or NUMA-awareness [153]. Yet,

none of these systems support larger-than-memory state or crash recovery, both im-

portant features for industry adoption. We identify efficient state management as a

largely uninvestigated topic in scale-up SPEs compared to numerous computational

improvements.

Common scale-out SPEs such as Apache Flink use persistent state backends

(e.g., RocksDB) to handle larger-than-memory state. However, general-purpose

key-value stores do not always fit stream-specific state access patterns [77]. They

treat state as a black box, while many streaming-specific patterns are known

in advance. Also, currently used general-purpose stores are not optimized for

emerging storage technology. Research on modern storage-aware systems shows

significant performance gains compared to traditional approaches [14, 89]. Storage-

aware and streaming-specific state management presents a wide range of research

challenges to improve the overall performance of modern SPEs.

5.3.3 Resource Inefficiency
Recent studies show that widely used scale-out SPEs do not fully utilize the under-

lying hardware [151, 152]. When designing future SPEs, overcoming this resource

inefficiency has great potential to reduce cost and improve performance. Higher

resource utilization leads to higher system performance, i.e., higher throughput or

lower latency. However, when processing smaller data volumes, scalability is not

the primary concern for many users. Efficient server use allows users to reduce the

number of required servers while still satisfying their performance needs. This not

only reduces infrastructure cost but also overall system complexity.

5.3.4 Overall System Optimization
Database systems show that optimizing the overall system brings large performance

benefits. Databases are commonly implemented in system languages such as C

and C++, which compile to machine code. They are highly tuned towards the

underlying system for maximum performance and offer, e.g., hardware-conscious

joins and indexes, CPU-optimized scans, or NUMA-aware scheduling.

On the other hand, many widely used SPEs are written in high-level languages

such as Java and Scala, targeting the JVM. Especially memory-management has a

high performance impact due to, e.g., garbage collection overhead. Also, common

88

Scale-In Stream Processing Section 5.4

SPEs often do not optimize internal operators at the level known from databases.

Overall, we observe a major gap between optimization levels in SPEs and database

systems. With the increasing maturity of SPEs, reducing this gap is essential to

improve the performance of future applications. Fortunately, many operations are

similar in databases and SPEs, allowing us to benefit from database optimization

research.

5.4 Scale-In Stream Processing

To overcome the current challenges in stream processing and acknowledge the

fact that real-world setups have drastically varying performance and availabil-

ity requirements, we propose scale-in processing. Scale-in processing is a new

paradigm that adapts to varying application demands by achieving high hardware

utilization on a wide range of hardware setups, reducing overall infrastructure

requirements. In contrast to scaling-up or -out, it focuses on fully utilizing the

given hardware instead of requiring more or ever-larger servers. We identify six

opportunities for scale-in SPEs, based on the challenges discussed in Section 5.3.

In Section 5.4.1, we present three opportunities to improve state management in

scale-in systems: emerging persistent storage media, crash recovery, and streaming-

specific access patterns. In Section 5.4.2, we discuss how query compilation and

specialized network communication aid in overcoming general resource inefficiency.

To increase the overall system performance, we discuss CPU-aware optimizations

in Section 5.4.3.

To achieve high performance, scale-up systems commonly optimize for large

high-end servers and scale-out SPEs commonly add more commodity servers.

Solving performance limitations by adding more machines results in neglected

individual server performance and poor resource utilization in scale-out systems.

On the other hand, current scale-up systems are confined to a single server and

require ever-larger machines to overcome performance issues. By combining both

scale-up and scale-out concepts, scale-in SPEs treat every machine as a server that

requires optimization, even if it contains only off-the-shelf components. To this end,

scale-in systems adapt their execution to the underlying hardware and the specified

queries. For large workloads, scale-in systems achieve the raw performance known

from scale-up systems and for medium or small pipelines, they reduce hardware

requirements while still offering key functionality such as crash recovery.

89

Chapter 5 Darwin: Scale-In Stream Processing

Viper TBB RocksDB

INSERT GET

0

2

4

6

8

10

µ
s
p
e
r
R
e
c
o
r
d

37

Figure 5.1: Insert and get performance.

5.4.1 Opportunities for State Management

In this section, we present three opportunities to improve state management in

scale-in systems: emerging persistent storage media, crash recovery, and streaming-

specific access patterns.

Persistent Storage

Scale-out systems use persistent storage to handle larger-than-memory state. This

entails a large performance decrease as storage access is significantly slower than

DRAM access. However, new persistent storage technology is closing the gap

between slow secondary storage and fast volatile memory. Recent work on PMem

storage systems shows that persistency can be achieved with less than 2× perfor-

mance decrease [14]. Also, fast NVMe SSDs are used in modern database systems

to extend storage capacity while still offering close-to-DRAM performance [89].

We show the performance of modern storage systems in Figure 5.1. We choose

Intel’s TBB concurrent hash map as a representative of in-memory state manage-

ment, as it is used in recent scale-up SPEs [45, 111]. We choose RocksDB as a

representative of a classical generic byte-based key-value store, as it is used in

Apache Flink. Finally, we choose Viper as a representative of modern storage-aware

key-value stores, which is based on a hybrid DRAM-PMem index and log structure

(Chapter 4 and [14]). Viper stores records directly in a PMem log without interme-

diate buffering in DRAM. To leverage the higher random access performance of

DRAM compared to PMem for index updates, its index is located in DRAM. This

hybrid design achieves 4× higher insert rates than PMem-only stores.

We prefill 100 million 50 Byte records before measuring another 100 million

90

Scale-In Stream Processing Section 5.4

Viper TBB RocksDB

Checkpoint Recovery

0

3

6

9

12

D
u
r
a
t
i
o
n
i
n
s

Figure 5.2: Checkpoint and recovery duration.

inserts/gets with 32 threads. Viper slightly outperforms TBB for inserts and is only

~2× slower for gets. We note that recent work shows TBB to not be the fastest

concurrent in-memory storage system [24], but it is used in common scale-up

SPEs [45, 111] and serves as an in-memory reference. The clear gap between

Viper/TBB and RocksDB shows the major shift in persistent storage performance

that systems can leverage. Unlike existing scale-out systems, storage-aware scale-in

systems do not need to trade performance for persistence. Fast storage enables

both efficient recoverability and high overall throughput.

Recovery

Considering server-local state is necessary when restarting an application after a

crash and highly beneficial for regular application restarts. Scale-up systems run on

high-end servers that contain hundreds of GBs of state. For specialized hardware,

replacing the server is not always possible and transferring its state to another

server quickly becomes a recovery bottleneck. In this case, state recovery must

occur on the same server. Additionally, current scale-out SPEs use server-local

state when restarting an application on the same node without a crash, e.g., when

re-scaling or deploying a newer version. For both recovery and restarting, it is

essential to have persistent state that outlives the application.

We show the advantage of using modern storage technology to achieve efficient

checkpointing and recovery in Figure 5.2. In this microbenchmark, we store 200

million 50 Byte records, i.e., 10 GB raw data, in three different storage instances.

As representatives of their respective system classes, we again use TBB, Viper, and

RocksDB. To persist TBB’s data, we store all entries in a tightly packed byte array

in a file stored on SSD. We see that the persistent systems RocksDB and Viper

91

Chapter 5 Darwin: Scale-In Stream Processing

1 5 10 20 50

Records per Block

0

1

2

3

4

5

6

µ
s
p
e
r
R
e
c
o
r
d 37

a) Shared

1 5 10 20 50

Records per Block

0

1

2

3

4

5

6
14

b) Individual

Viper TBB RocksDB

Figure 5.3: Grouped state access performance for

a) shared and b) individual storage instances.

perform a checkpoint very efficiently. RocksDB must only flush its volatile write

buffer and Viper must persist only metadata. TBB takes significantly longer, as

all in-memory data is converted and copied to secondary storage, which is I/O-

bound. For recovery, we see that RocksDB performs best, as it reads only metadata

and immediately accepts requests. Viper must recover its volatile index, which

depends on the number of entries. TBB reads all data from storage and re-creates

its in-memory state, which takes significantly longer than the other two systems.

This experiment shows a large difference in the recovery performance of volatile

and persistent state. Expanding on this is a key element of scale-in stream pro-

cessing, as it impacts both runtime performance while checkpointing and start-up

time after a crash. With state in the order of TBs, re-creating in-memory state from

secondary storage becomes infeasible.

Streaming-specific State Access

In addition to storage-aware state management, streaming-specific access patterns

improve performance even on slow storage media. We demonstrate this based on

current behavior in Apache Flink. In Flink, windowed operations store incoming

events in a list of records belonging to a given window. When using the RocksDB

backend, the operator gets the current value, deserializes it, appends the new

value, and serializes the updated list back to its byte representation. This incurs

an unnecessarily high overhead for each record. As the records are not needed

immediately and are accessed only as a list, they can be buffered in small in-memory

lists before writing to RocksDB.

We show the effects of buffering records in Figure 5.3. In this experiment, we

prefill 100 million 50 Byte records before performing another 100 million inserts

with 32 threads. We distinguish between a shared instance, in which all threads

92

Scale-In Stream Processing Section 5.4

operate on the same store, and individual instances, in which each thread has its

own store. We store the records in small blocks, consisting of up to 50 records.

We observe that Viper outperforms TBB for individual instances but performs

worse for the shared one. This difference is important when designing streaming

state, as it can either be shared across operator instances, e.g., in Grizzly [45], or

partitioned by key, e.g., in Flink. Our results show that depending on the underlying

storage and chosen system, one or the other is more beneficial. More importantly,

RocksDB performs between 14–20× worse than TBB when storing individual

records, showing the high overhead of persistent storage. However, compared to

individual records in TBB, 50 grouped records are only 2–3× slower in RocksDB.

This shows that streaming-specific access significantly improves state performance,

even for low-end storage media.

5.4.2 Opportunities for Resource Inefficiency
In this section, we discuss how query compilation and network communication aid

in overcoming general resource inefficiency.

Query Compilation. At the core of scale-in processing, query compilation

allows for hardware-conscious optimization on each server. This has many advan-

tages, which are clearly demonstrated in previous work on SPEs [45] and database

systems [118]. Compiling queries allows the compiler to optimize the execution for

the given CPU without pre-compiling the runtime engine for all possible systems.

This enables compiler features such as auto-vectorization and architecture-aware

tuning without any development overhead.

To highlight this advantage, we run a short experiment with CPU-specific opti-

mization enabled and disabled. We execute a query in-memory based on Nexmark

Q3, containing an auction-like setup with a join and aggregation. We first compile

the query generically, i.e., no CPU-aware compiler flags. This represents the general

case in which we do not target the underlying hardware and use a generic imple-

mentation for all servers. We then enable CPU-optimizations via -march=native.
On an Intel Xeon Gold 5220S CPU, adding the CPU optimizations achieves a 12%

higher throughput without any changes to the code. This shows that even without

explicitly writing CPU-optimized code, automatically targeting the underlying

hardware is very beneficial.

Additionally, query compilation allows us to integrate query information as

compile-time information, enabling additional optimizations. A push-based execu-

tion model improves data locality and reduces the number of virtual method calls

compared to interpreted execution by compiling the entire execution into a tight

loop [118]. Overall, query compilation allows us to tailor the execution exactly to

93

Chapter 5 Darwin: Scale-In Stream Processing

the given query, system, and user requirements. It is the foundation for numerous

other optimizations that we describe below, such as CPU optimization and state

management.

Network Communication. An important component of scale-out SPEs is

network communication between the servers. Recent work shows that the net-

work constitutes a performance bottleneck and causes resource inefficiency on

the servers [79]. In their study, the authors show that scale-out systems like Flink

reach network limits long before they reach the actual saturating data rate. When

performing a distributed aggregation across multiple nodes with 1 GBit LAN, Flink

sustains only 1.2 million events/s, which amount to only 40 MB or 1/3 of the net-

work bandwidth. While this constitutes the main bottleneck in 1 GBit LAN, today

even medium-sized cloud instances have 10 or more GBit/s network connections,

matching or surpassing SSD storage bandwidth. Managing this bandwidth with

techniques like late merging [151] to reduce data shuffling or user-space networking

to reduce TCP/IP overhead [91], enables higher effective bandwidth utilization even

for smaller workloads.

For large-scale workloads, advances in network technology drastically improve

cross-server communication performance via high bandwidth Infiniband and RDMA

connections of up to 200 GBit/s per network card [108]. Current research demon-

strates that SPEs benefit from RDMA for data ingestion [151] and that RDMA-based

message passing achieves very high throughput with low latency [136]. These

two findings show that there is a large potential for optimizing SPEs through fast

RDMA connections. Especially in combination with modern byte-addressable stor-

age, such as PMem, this opens new opportunities for more efficient checkpointing,

state migration, and recovery approaches.

5.4.3 Opportunities for System Optimization
In this section, we discuss CPU-aware optimizations to increase the overall system

performance.

CPU-aware Optimization. Poor CPU utilization is a major contributor to

resource inefficiency in current scale-out SPEs [152]. To overcome this, scale-in

SPEs target the system’s CPU to achieve higher overall utilization. Recent work

shows the potential of adapting OLAP queries towards a given workload and system

setup [46]. Exploring different computation modes, such as compiled or vectorized

execution, is heavily researched in databases. However, they have received little

attention in SPEs so far. Transferring these concepts to SPEs has the potential to

further increase the overall system performance. For example, storing network-

buffered records in a row or column format depending on the data and query allows

94

Introducing Darwin Section 5.5

Figure 5.4: Darwin’s architecture and execution flow.

for a performance trade-off between processing time and ingestion rate, while also

enabling scalar or vectorized execution modes.

Another optimization is based on simultaneousmultithreading (SMT). Depending

on the workload, using SMT hides memory access latency while not using it

improves cache locality. When multiple operators have low CPU consumption,

they are placed on the same core to achieve better utilization. When CPU utilization

is high, features such as explicit SIMD instructions achieve higher throughput with

the same utilization. While query compilation generally targets the underlying CPU,

explicit optimizations and domain knowledge additionally improve performance.

5.5 Introducing Darwin
In this section, we present Darwin, our scale-in SPE prototype. Darwin treats

each server it runs on like a scale-up system by fully utilizing the given hardware

configuration. To this end, it uses query compilation to generate efficient execution

plans for each query targeting the server’s hardware. This targeting currently

includes storage-aware state management and CPU-specific optimizations. As

Darwin is still in early stages, we plan to add support for more opportunities

discussed in Section 5.4, e.g., network-aware data transfer to achieve efficient

multi-server processing or efficient checkpointing and recovery mechanisms.

5.5.1 Darwin Architecture

In this section, we present Darwin’s high-level architecture, components, and

execution flow, as shown in Figure 5.4.

Data Pipeline. Users create queries via a data pipeline object, which currently

offers an SQL-like API inspired by Apache Flink’s Table API [39]. Additionally, the

95

Chapter 5 Darwin: Scale-In Stream Processing

user configures runtime options such as the compiler to use, which storage medium

to use for state, and which architecture to optimize for. To run on heterogeneous

hardware without manually adapting for each server, this config also auto-detects

system characteristics.

Query Plan. From the query, a query plan is created. The query plan represents

the logical version of the query, similar to relational algebra for classical database

queries. Compared to relational algebra, it requires a few additions, e.g., for win-

dowing logic or external I/O. The query plan is the first step in the execution in

which optimizations are performed, e.g., predicate push-down.

Operator Graph. Together with the config, the query plan is translated to an

operator graph. We briefly describe the translation based on the query plan shown

in Figure 5.4. Starting from the sink, each node recursively translates its input

node. The resulting operator graph represents the physical operators, i.e., the

specific implementation chosen for the given query, system, and config. As start

and end nodes, source and sink operators require special treatment. They contain

buffering logic, e.g., for external network-based I/O, and either have no input or

output operators. After the source is translated, the selection node is translated to

an equality-filter operator. The translation of window nodes requires reordering,

as windowing logic impacts the operator order. The tumbling window assignment

and trigger run before the aggregation, but count-based triggers run afterward.

Thus, window translation requires splitting and distributing certain nodes across

the operator graph. For the aggregation, the translator chooses a hash-based sum

aggregation operator with state in PMem, as specified by the user.

Query Generator. The query generator takes the operator graph and generates

a C++ string representation of the actual query. In Figure 5.4, we show a pseudo-

code version of the produced code. When the FilterOperator is called, it receives a

record with schema information. From this, it generates a conditional statement

with the correct predicate (e.g., equality) based on the filtered attribute (e.g, e.a).
Depending on the predicate and execution model, the filter operator can also

produce vectorized or SIMD-based filters, allowing for more fine-grained hardware

optimization. Afterward, it calls the downstream tumbling assigner. The assigner
generates code to assign the record to a tumbling window by mapping the record’s

timestamp to a window key. This process is continued until all operators are called

and the query is fully generated.

As the windowed aggregation buffers data, it represents a pipeline breaker [45,

118]. The sink operator is executed after the aggregation is complete, i.e., when

the window is triggered. The query generator creates a new function for the sink,

which represents a new pipeline that can be executed independently. Splitting

pipelines allows us to independently scale sources, sinks, and other operators.

96

Introducing Darwin Section 5.5

As the query generation contains runtime information such as data types or

filter conditions, the generated query is optimized accordingly. The SumOperator

knows the key and value types, so it instantiates a state object with them. This is an

advantage over key-value store interfaces such as RocksDB in Flink, which operate

on generic byte representations. Storing records with explicit type information

removes serialization and deserialization overhead and allows the compiler to

optimize data move instructions, e.g., by issuing SIMD loads/stores instead of

regular 8 Byte movs [14].
Query Compiler. Once the query code is generated, the query compiler com-

piles it. It uses information in the config to target the underlying hardware, e.g., by

enabling vectorization features of the CPU. As the compiler runs independently

of Darwin, users can specify a different compiler than was used to compile Dar-

win. Darwin can be compiled once and distributed while still providing flexibility

towards the system it executes queries on. The code is compiled into a shared

library that is dynamically loaded by Darwin during execution. This allows Darwin

to interact with the query, e.g., when passing allocated memory, data, or other

resources.

Query Execution. In the last step, the query is loaded and executed. Depending

on the generated pipeline and specified parallelism, multiple source, sink, and

operator instances are started. During execution, Darwin monitors the performance

of the query to allow for changes in parallelism and thread placement. If pipelines

have low utilization, they are merged to free resources. If pipelines are creating

backpressure, Darwin splits them to keep up with the data rate. This approach

allows for some flexibility during runtime when data loads vary or are skewed. It

also supports adaptive changes to the query if gathered performance metrics and

data characteristics allow for more aggressive optimization [45].

5.5.2 Performance
We compare the performance of Darwin with the state-of-the-art scale-up SPE

Grizzly [45] and the widely used scale-out SPEApache Flink [21]. In this experiment,

we run a 60-second tumbling window sum aggregation on 32 Byte records with

15000 unique keys. Our server contains an Intel Xeon Gold 6240L CPU with 18

cores, 96 GB DRAM, and 1.5 TB (6× 256 GB) Intel Optane DC Persistent Memory

100 Series. The experiments are run with 32 threads. For the in-memory version,

Grizzly and Darwin use the TBB concurrent map. For the persistent version, Darwin

uses the hybrid DRAM-PMem key-value store Viper(Chapter 4 and [14]. Flink uses

RocksDB.

We show the results in Figure 5.5. On the left, we see that Darwin performs

97

Chapter 5 Darwin: Scale-In Stream Processing

a) In-Memory
0

20

40

60

T
h
r
o
u
g
h
p
u
t

i
n
M
o
p
s
/
s

56.7 56.7

b) Persistent
0

20

40

60

32.5

2.7

Darwin Grizzly Flink

Figure 5.5: Throughput of Darwin, Grizzly, and Flink.

equally to Grizzly for in-memory processing, as both systems are limited by TBB

to store the aggregations. We note that this is not the highest performance that

Grizzly can achieve, but the additional optimizations proposed by the authors

are orthogonal to the basic concept and could also be applied to Darwin. On the

right, we see that Darwin outperforms Flink by over an order of magnitude (12×).
Additionally, in-memory Darwin is only 1.7× better than the persistent version,

which is in line with the PMem–DRAM gap presented in the Viper paper (Chapter 4

and [14]). This shows that modern storage significantly closes the gap between

volatile and existing durable state management, enabling us to efficiently support

larger-than-memory state. Overall, our results show that Darwin achieves both

state-of-the-art scale-up performance and an order of magnitude improvement over

existing larger-than-memory scale-out systems.

5.6 Conclusion
To bridge the gap between performance and core features, we propose scale-in
stream processing and present our prototype system Darwin. By achieving high

hardware utilization on a wide range of hardware setups, scale-in systems adapt to

application-specific demands. Combining scale-out concepts with advancements in

persistent memory and scale-up concepts that focus on the underlying hardware,

scale-in processing achieves high system utilization without sacrificing key fea-

tures for industry adoption, such as recoverable, larger-than-memory state. Our

scale-in SPE prototype Darwin uses storage-aware state management and query

compilation to match state-of-the-art scale-up performance while outperforming

existing scale-out systems by an order magnitude. Scale-in processing enables

application-proportional scaling of server requirements, making it economical for

all levels of performance needs.

98

6 What We Can Learn from
Persistent Memory for CXL

Parts of this chapter have been published in [17].

6.1 Introduction

With the arrival of Intel Optane PersistentMemory (PMem) in 2019, research on new

data management techniques for byte-addressable persistent memory increased

significantly. Among other questions, this research investigates how to handle

varying memory access latency, how to place data based on available capacity, and

how to design for memory access sizes larger than a single cache line but smaller

than a page [14, 101, 129]. However, in 2022, Intel announced that their Optane

product line will be discontinued in favor of recent trends toward Compute Express

Link (CXL) [41]. We expect that while Optane was abandoned, research based on it

still provides valuable insights.

In light of Intel citing CXL as one of the reasons for ending Optane, in this

chapter, we raise the question: “What can we learn from PMem research for future

CXL research?”. Based on benchmark results from PerMA-Bench (Chapter 3 and

[15]), we look at three insights from PMem that also apply to future research on

CXL. While CXL is an interconnect and not a memory technology, we believe that

certain characteristics apply to both.

First, we discuss how limited hardware access can lead to solutions that are too

specialized for one hardware configuration or not specialized enough. We then

discuss how existing CPU components interact with new memory types, based on

the prefetching behavior with PMem. Next, we show that different memory types

offer different price-performance trade-offs depending on the use case. Finally, we

discuss when the common PMem concepts of flushing data and ensuring global

visibility throughmemory fences are needed in CXL-attachedmemory. Even though

CXL-attached memory is not yet generally available, these insights highlight some

challenges that future research faces when integrating new memory types into a

long-established memory hierarchy.

99

Chapter 6 What We Can Learn from Persistent Memory for CXL

6.2 Compute Express Link
In this section, we briefly provide some background on the Compute Express Link

(CXL) interconnect [30]. The key idea of CXL is to provide cache-coherent memory

between host CPUs and e.g., accelerators, smart network, and memory-expansion

devices. It is based on the physical layer of PCI Express (PCIe), allowing users

to attach common peripheral devices, such as FPGAs or GPUs. However, it also

allows users to attach memory-expansion devices, i.e., devices that only provide

additional memory. This circumvents the limited number of memory channels

directly attached to a CPU, which is the restriction in current systems.

CXL defines three protocols, CXL.io, CXL.mem, and CXL.cache. CXL.io covers the
same functionality as PCIe, i.e., it provides a non-coherent load/store interface for

I/O devices [28, p. 71]. It builds the basis for the other protocols. CXL.cache allows

attached devices to cache host memory [28, p. 83]. CXL.mem offers a transactional

interface between the host CPU and memory [28, p. 110].

Based on these protocols, there are three device types in CXL
15
. Type 1 devices

implement CXL.io and CXL.cache, i.e., these are devices that may cache host mem-

ory but do not offer any memory for the host to manage. Type 2 devices implement

all three protocols. They are devices that have a cache and offer additional memory,

e.g., accelerator cards with on-device memory. Type 3 devices implement CXL.io

and CXL.mem, i.e., they are devices that only offer additional memory to the host.

There are currently three major versions of the CXL specification. Major features

for its adoption in data centers are introduced in versions 2.0 and 3.0, e.g., memory

pooling and switch-attached memory. Pooling allows multiple CPUs to coherently

and dynamically manage memory from a memory device on the same machine.

Switch-attached memory allows for coherent network-attached memory pooling

in PCIe/CXL networks. This feature allows for large-scale memory disaggregation

as it is possible to have a memory-only server from which memory is accessed

remotely by other servers.

6.3 Transferring Insights from PMem to
CXL-Attached Memory

In this section, we discuss how insights derived from PMem transfer to future CXL

research.

Benchmark Setup. We evaluate two servers with 256 GB PMem DIMMs of the

15 For more details on the specific device types, we refer to the CXL specification [28].

100

Transferring Insights from PMem to CXL-Attached Memory Section 6.3

PerMA Dash

0

25

50

75

M
i
l
l
i
o
n
O
p
s
/
s

PerMA F+F

0

10

20

1st Gen 2nd Gen

Figure 6.1: Lookup performance of PerMA compared to Dash and FAST+FAIR.

first and second-generation Optane. The first generation server contains a Cascade

Lake CPU with 18 cores and six PMemDIMMs at 2933 MT/s. The second generation

server contains an Ice Lake CPU with 32 cores and eight PMem DIMMs at 3200

MT/s. Both systems run Ubuntu 20.04 with a 5.4 kernel. We refer to Section 3.3.1

for more details on the server setup.

Application Tailoring

To understand howwell applications utilize the hardware, we compare the lookup()
performance of PMem index structures modeled in PerMA-Bench with the actual

index implementations. The results obtained with PerMA-Bench show a perfor-

mance upper-bound, as they include only memory access without computation or

branching logic. The results for the hash index Dash [101] and the B-Tree index

FAST+FAIR [58] are shown in Figure 6.1. The memory access for Dash is modeled

as a 512-byte random read, as Dash reads two consecutive 256-byte hash buckets to

find an entry. For FAST+FAIR, we issue three random 512-byte reads that represent

B-Tree node lookups. The experiments are run with 16 threads. We observe that

while the underlying bandwidth improves across generations, the indexes do not

(fully) utilize this. Unlike on the first generation server, Dash spends ~20% of all

cycles on non-memory access on the second generation server, which contains

more PMem DIMMs, a newer CPU, and better DRAM. Due to the high price of

Optane, researchers often do not have access to different setups, which leads to

tailoring the application towards only a single setup and, in turn, does not always

generalize. On the other hand, we see FAST+FAIR as an index designed for general

PMem before Optane became available. The improved memory bandwidth does not

translate to the index, as FAST+FAIR spends a lot of time on heavy-weight locking

and inefficient PMem access patterns. As FAST+FAIR was designed pre-Optane,

we see that the system is not tailored enough to the underlying hardware, and

performance is lost.

Insight 1: Due to limited hardware availability, systems are tailored too much

toward a single setup or not tailored enough toward the actual hardware. Through

101

Chapter 6 What We Can Learn from Persistent Memory for CXL

64 256 512 1024

Access Size in Byte

0

20

40

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

Enabled Disabled

Figure 6.2: Impact of prefetcher on PMem random read bandwidth.

the CXL abstraction, future systems will cover a wider range of memory perfor-

mance characteristics. Thus, it is important to design and research robust systems

that generalize across different hardware and multiple memory tiers.

Prefetching

As a new layer in the long-established memory hierarchy, it is important to un-

derstand how well PMem interacts with existing CPU components, which are

optimized for caches and DRAM. In Figure 6.2, we show the impact of the hardware

prefetchers for random memory reads on the second-generation Optane server. We

en-/disable all hardware prefetchers and run on 16 threads. We see that for small

access sizes (< 256-byte), the prefetcher does not impact performance, i.e., the

prefetcher does not prefetch. However, for 512 and 1024-byte access, the prefetcher

speculatively loads unnecessary data not accessed by the user in the background,

reducing the available bandwidth for requested reads. We observe this in hardware

performance counters, where the underlying bandwidth utilization is identical in

both runs, but the effective bandwidth in the application is not. Thus, disabling the

prefetcher actually improves performance in this case. This effect is also observable

for 2048-byte access but not for 4096-byte or more [31], as page-size access is

a well-understood and optimized pattern in DRAM. As Optane’s internal access

occurs at 256-byte granularity, most applications design access in multiples of

256-byte. As a consequence, a 512-byte random access to Optane, e.g., a node

lookup in FAST+FAIR, spans only two Optane “cache lines”, which should not

trigger prefetching. However, the prefetcher views these 512-byte as regular DRAM

access, spanning eight consecutive cache lines, and starts prefetching for sequential

access.

Insight 2: Prefetchers are highly optimized toward 64-byte DRAM cache line

access, and CXL specifies 64-byte transfers in the transaction layer [28, p. 167].

However, CXL abstracts from the underlying device, i.e., it could support Optane

PMem or other memory devices, and memory behind CXL may not be accessible

in 64-byte granularity. As all CPU- and CXL-attached memory is available in the

102

Transferring Insights from PMem to CXL-Attached Memory Section 6.3

Table 6.1: Price-performance of PMem and DRAM. Read/write values in e/GB/s. Calcula-
tion based on listing prices from dell.de in February 2022.

e/GB capacity seq. read rnd. read seq. write rnd. write

PMem 12.77 0.22 0.33 0.60 2.12

DRAM 59.37 0.38 0.46 0.70 0.91

same unified virtual address space, prefetchers operate on both types of memory.

Future research should investigate how existing components, like the prefetcher,

interact with memory that is not attached directly to the CPU via memory channels

and has different access characteristics. However, unlike Insight 1, this cannot be

solved by applications alone and most likely requires hardware changes as well.

Price-Performance

In Table 6.1, we show the price-performance for basic sequential/random read/write

access in PMem and DRAM on the same second-generation Optane server while

disregarding persistence. The data access-related prices per GB of throughput are

normalized to the device’s price per GB to avoid including the higher price for larger

capacity. We see that the price per GB capacity is significantly lower for the PMem

DIMMs than for the high-end DRAM DIMMs. As PMem is not available in cloud

vendors, we base our calculations on the list price on dell.de [135] in February 2022.

Focusing on the relative scale between the listed prices rather than on the exact

monetary values, for sequential access and random reads, we observe that PMem

has a better price-performance ratio, as the bandwidth is often only 2–3× worse

while the price per GB capacity is about 5× better. DRAM outperforms PMem only

for 64-byte random writes, where PMem bandwidth is very low because of high

write amplification.

Insight 3: For applications that do not require peak performance or persistence,

PMem can be used as a cheaper DRAM alternative with significantly higher capacity.

As increasing memory capacity is a selling point of CXL, future research should

investigate the price-performance trade-off in multi-tier memory setups for slower

and potentially cheaper CXL-attached memory.

Memory Fences and Data Visibility

Writing correct code for PMem requires the correct use of flushes and memory

fences to ensure that data is persisted and globally visible (see Section 2.1.4). Similar

to eADR, explicitly flushing is not necessary for CXL, as data in the caches is within

103

Chapter 6 What We Can Learn from Persistent Memory for CXL

the cache-coherent domain of CXL. However, explicit memory fences are required

for applications that share memory.

For example, given two servers 𝑠1 and 𝑠2 that access shared remote CXL-attached

memory on server 𝑠𝑚 . If 𝑠1 modifies data, 𝑠2 will observe the changes in a cache-

coherent manner, as specified by CXL. If 𝑠1 crashes, two scenarios can occur. Either

the modified state was transferred to 𝑠𝑚 or 𝑠2, so the state is “persistent” from 𝑠1’s

perspective, as it survived the crash. Alternatively, the data may still only reside

on 𝑠1, i.e., it is lost with the crash.

These scenarios are similar to a single node crash on PMem. Either the changes

were globally visible (for eADR systems) or in PMem before the crash, i.e., they were

flushed to a “persistent” medium,
16
or they are lost. CXL offers a Global Persistent

Flush (GPF) since version 2.0 that ensures that data is flushed on power loss, similar

to eADR with Optane [28, p. 581]. While this is originally added to support PMem in

CXL, it also applies to regular memory. It is needed when the application semantics

on 𝑠1 assume remote memory to be persistent in that it survives a crash of 𝑠1. Similar

to the example in Section 2.1.4, it is important for applications to issue correct

memory fences even for small modifications to shared data. If they do not, they

may make invalid assumptions about state that did not survive the crash.

Memory fences are required with shared memory across processes on a single

machine, regardless of CXL. However, PMem research has highlighted the difficulty

of doing this correctly in numerous cases, even for threads within a single appli-

cation [115, 116]. A key feature of CXL is memory pooling and cache-coherence

across servers, so correctly identifying which modification must be guarded with

memory fences becomes even more relevant in shared memory CXL setups.

Insight 4: With cache-coherent, remote memory in CXL, applications must

consider that previously assumed volatile memory may now outlive a server crash.

To handle this correctly, explicit memory fences are required for shared state, similar

to existing approaches in PMem.

6.4 Conclusion
With PMem, various assumptions about the homogeneity of DRAM access have

been disrupted, leading to new challenges and designs. In this chapter, we discussed

how insights from these designs also apply to future CXL research. New CXL-based

approaches need to focus on performance generalizability under initially limited

hardware availability. They should consider how interaction with long-established

components, such as prefetchers, impacts performance. In multi-tier memory

16 This does not need to be actual PMem. It must only appear to survive a crash.

104

Conclusion Section 6.4

setups, new designs should consider their economic viability as a key trade-off.

And finally, remote shared memory setups require careful handling of memory

visibility through fences to ensure correctness. While PMem is discontinued for

now, we hope that future CXL work builds on these insights to establish a more

general understanding of how systems interact with multi-tier memory.

105

7 Conclusion & Outlook

7.1 Conclusion
The performance characteristics of large-scale persistent memory challenged estab-

lished assumptions about the storage hierarchy. With byte-addressable, random

access similar to DRAM and persistence like secondary storage, PMem blurs the

lines between two distinct layers of this hierarchy. Based on these characteristics,

research found many ways to significantly improve the performance of database

storage systems. In this thesis, we investigated the use of PMem for efficient state

management. We posed the question:

With the emergence of a fundamentally different memory technology
in the form of persistent memory, how do data management systems
need to be designed to leverage its unique properties for efficient state
management and how can we extend these insights to future disruptive
memory technologies?

Our answer to this question has multiple parts. In a first step, before designing

systems for PMem, we must understand its performance. To this end, we performed

an analysis of PMem performance across a wide range of server setups and con-

figurations (Chapter 3). We identified eight general and implementation-specific

aspects that influence PMem performance and highlight how they impact current

and potential future designs.

Based on our understanding of PMemperformance characteristics, we presented a

hybrid PMem-DRAM key-value store called Viper in Chapter 4. Based on the perfor-

mance of the individual memory technologies’ access patterns, Viper splits storage

and indexing into PMem and DRAM, respectively. With our PMem-optimized page

layout, we showed that Viper achieves very high ingestion rates, outperforming

other designs at the time, while offering full data persistence.

To leverage PMem’s performance in new systems, we identified new design

choices for stream processing engines in Chapter 5. We discussed limitations of

current stream processing engines and proposed a new prototype engine, Darwin,

that tailors its execution toward the underlying hardware. With our proposed

design, we showed that Darwin can leverage the performance and persistence of

PMem for state management in SPEs.

107

Chapter 7 Conclusion & Outlook

Even though PMem was discontinued, it is advantageous to apply knowledge

gained from research on it to futurememory technologies. In Chapter 6, we provided

an outlook to multi-tier memory research based on insights gained throughput

this thesis. We discussed how learnings from PMem research can be transferred to

future multi-tier memory setups. We highlighted four challenges and showed how

they apply to CXL-based systems in the future.

Concluding, in this thesis we have shown that PMem offers high performance for

state management, bridging the gap between volatile but fast DRAM and persistent

but slow secondary storage. Although Optane was discontinued, new multi-tier

memory technology is emerging in various forms. By thoroughly investigating

Optane’s performance and building new systems based on it, we have shown how

to incorporate such a new memory technology. By following our approach and

insights gained throughout this thesis, future work can integrate future technology

to improve state management for database systems.

7.2 Research Outlook
The introduction of PMem into the storage hierarchy led to a significant amount

of research on how to integrate it into data management systems. Some work

focused on the persistence, while other work investigated its use as high capacity

DRAM with slightly lower access performance. Even with Optane discontinued

and no current large-scale PMem alternatives, future research can still continue

using Optane to investigate multi-tier memory setups.

As outlined in Chapter 6, various properties of Optane will likely apply to CXL-

memory, e.g., unexpected interaction with existing CPU components, such as the

prefetcher, or required memory fences for correctness. The exact characteristics

of emerging CXL-attached memory are not yet known, but we have shown that

even within the same product line of Optane, performance differs significantly

between setups. As a solid understanding of performance in such complex, multi-

tier memory setups is essential to design efficient systems, we are extending the

PerMA-Bench framework in ongoing work to support such setups.

Beyond the high capacity of current PMem, novel persistent designs remain

an interesting area of research. Optane was mainly discontinued for economical

reasons [41], with various factors limiting its adoption. Optane PMem required

high-end Intel CPUs because of the modified DDR-T protocol. By removing the

necessity of attaching PMem directly to memory channels, opportunities arise for

other manufacturers to produce and distribute PMem. Following an open standard,

such as CXL, it becomes possible to combine Optane or other PMem with non-Intel

108

CPUs behind a standard PCIe interface. The economics of such setups may be

significantly different to Optane–Intel setups, making it more viable to add PMem

to the storage stack. In this case, future work should investigate the viability of

existing designs on new hardware to come up with robust and general solution for

PMem.

Overall, regardless of the exact outcome of PMem as a technology, we believe

its introduction and disruption of the traditional storage hierarchy has led to a re-

evaluation of the memory-storage divide for data management systems. Alternative

memory technologies will continue to emerge, challenging how and where we

efficiently store and process data.

109

7References
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-

Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt,

and SamWhittle. The dataflowmodel: a practical approach to balancing cor-
rectness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. Proceedings of the VLDB Endowment 8:12 (Aug. 2015). 1792–1803. doi:
10.14778/2824032.2824076 (cited on page 85).

[2] Paul Alcorn. Intel Kills Optane Memory Business. https://www.tomshardware.com/

news/intel-kills-optane-memory-business-for-good. 2022 (cited on page 3).

[3] Paul Alcorn. Intel Optane DIMM Pricing. https://www.tomshardware.com/news/

intel-optane-dimm-pricing-performance,39007.html. 2020 (cited on page 75).

[4] Alibaba. Elastic Compute Service. 2021. url: www.alibabacloud.com/product/ecs

(cited on page 83).

[5] Alibaba. Four Billion Records per Second! 2020. url: www.alibabacloud.com/blog/

four-billion-records-per-second-stream-batch-integration-implementation-of-

alibaba-cloud-realtime-compute-for-apache-flink-during-double-11_596962 (cited

on page 83).

[6] Joy Arulraj and Andrew Pavlo.How to Build aNon-VolatileMemoryDatabase
Management System. In: Proceedings of the 2017 ACM International Conference
on Management of Data. 2017, 1753–1758. doi: 10.1145/3035918.3054780 (cited on

page 2).

[7] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. Let’s talk about storage
& recovery methods for non-volatile memory database systems. In: SIG-
MOD ’15. 2015, 707–722. doi: 10.1145/2723372.2749441 (cited on pages 23, 51,

54).

[8] Joy Arulraj, Matthew Perron, and Andrew Pavlo.Write-behind logging. Proceed-
ings of the VLDB Endowment 10:4 (2016). 337–348. doi: 10.14778/3025111.3025116
(cited on page 51).

[9] Jens Axboe. fio: Flexible I/O Tester. 2022. url: https://github.com/axboe/fio (cited

on page 51).

111

https://doi.org/10.14778/2824032.2824076
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
www.alibabacloud.com/product/ecs
www.alibabacloud.com/blog/four-billion-records-per-second-stream-batch-integration-implementation-of-alibaba-cloud-realtime-compute-for-apache-flink-during-double-11_596962
www.alibabacloud.com/blog/four-billion-records-per-second-stream-batch-integration-implementation-of-alibaba-cloud-realtime-compute-for-apache-flink-during-double-11_596962
www.alibabacloud.com/blog/four-billion-records-per-second-stream-batch-integration-implementation-of-alibaba-cloud-realtime-compute-for-apache-flink-during-double-11_596962
https://doi.org/10.1145/3035918.3054780
https://doi.org/10.1145/2723372.2749441
https://doi.org/10.14778/3025111.3025116
https://github.com/axboe/fio

[10] I.G. Baek, M.S. Lee, S. Sco, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S.

Kim, I.K. Yoo, U.-I. Chung, and J.T. Moon.Highly scalable non-volatile resistive
memory using simple binary oxide driven by asymmetric unipolar voltage
pulses. In: IEDM Technical Digest. IEEE International Electron Devices Meeting. 2004.
doi: 10.1109/iedm.2004.1419228 (cited on pages 3, 12).

[11] R. Bayer and E.M.McCreight.Organization andmaintenance of large ordered
indexes. Acta Informatica 1:3 (Sept. 1, 1972). 173–189. doi: 10.1007/BF00288683
(cited on page 1).

[12] Lawrence Benson, Richard Ebeling, and Tilmann Rabl.Evaluating SIMDCompiler-
Intrinsics for Database Systems. In: Workshop on Accelerating Analytics and
Data Management Systems (ADMS’23). 2023.

[13] Lawrence Benson, Philipp M. Grulich, Steffen Zeuch, Volker Markl, and Tilmann

Rabl. Disco: Efficient Distributed Window Aggregation. In: EDBT ’20. 2020
(cited on page 86).

[14] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. Viper: An Efficient Hy-
brid PMem-DRAM Key-Value Store. Proceedings of the VLDB Endowment 14:9
(2021). 1544–1556. doi: 10.14778/3461535.3461543 (cited on pages 5, 11, 23, 28, 37,

42, 51, 53, 88, 90, 97–99).

[15] Lawrence Benson, Leon Papke, and Tilmann Rabl. PerMA-bench: benchmark-
ing persistent memory access. Proceedings of the VLDB Endowment 15:11 (July
2022). 2463–2476. doi: 10.14778/3551793.3551807 (cited on pages 2, 5, 11, 23, 99).

[16] Lawrence Benson and Tilmann Rabl. Darwin: Scale-In Stream Processing. In:
12th Conference on Innovative Data Systems Research, CIDR 2022. 2022 (cited on

pages 6, 83).

[17] Lawrence Benson, Marcel Weisgut, and Tilmann Rabl.WhatWe Can Learn from
Persistent Memory for CXL. In: Datenbanksysteme für Business, Technologie und
Web (BTW 2023). Vol. P-331. 2023, 757–761. doi: 10.18420/BTW2023-48 (cited on

pages 6, 99).

[18] Maximilian Böther, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. Ana-
lyzing Vectorized Hash Tables across CPU Architectures. Proceedings of the
VLDB Endowment 16:11 (Aug. 24, 2023). 2755–2768. doi: 10.14778/3611479.3611485.

[19] Maximilian Böther, Otto Kißig, Lawrence Benson, and Tilmann Rabl. Drop It In
Like It’s Hot: AnAnalysis of PersistentMemory as a Drop-in Replacement
for NVMe SSDs. In: DaMoN ’21. 2021. doi: 10.1145/3465998.3466010 (cited on

pages 2, 4, 51).

[20] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H C Du. Characterizing,
Modeling, andBenchmarkingRocksDBKey-ValueWorkloads at Facebook.
In: FAST ’20. 2020, 209–223 (cited on pages 67, 69, 72, 75).

112

https://doi.org/10.1109/iedm.2004.1419228
https://doi.org/10.1007/BF00288683
https://doi.org/10.14778/3461535.3461543
https://doi.org/10.14778/3551793.3551807
https://doi.org/10.18420/BTW2023-48
https://doi.org/10.14778/3611479.3611485
https://doi.org/10.1145/3465998.3466010

[21] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl,

and Kostas Tzoumas. Apache Flink(TM): Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38:4 (2015). 28–38 (cited on pages 4, 53, 87,

97).

[22] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl.

Cutty: Aggregate Sharing for User-Defined Windows. In: CIKM. 2016, 1201–

1210. doi: 10.1145/2983323.2983807 (cited on page 86).

[23] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel

Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. Trill: a high-
performance incremental query processor for diverse analytics. PVLDB 8:4

(Dec. 2014). 401–412. doi: 10.14778/2735496.2735503 (cited on page 87).

[24] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski, James

Hunter, and Mike Barnett. FASTER: A Concurrent Key-Value Store with In-
Place Updates. In: SIGMOD ’18. 2018, 275–290. doi: 10.1145/3183713.3196898
(cited on pages 55, 56, 69, 81, 91).

[25] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. uTree: a
persistent B+-tree with low tail latency. Proceedings of the VLDB Endowment
13:12 (2020). 2634–2648. doi: 10.14778/3407790.3407850 (cited on pages 23, 28, 61,

66, 70, 81).

[26] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. Flat-
Store: An Efficient Log-StructuredKey-Value Storage Engine for Persistent
Memory. In: ASPLOS ’20. 2020, 1077–1091. doi: 10.1145/3373376.3378515 (cited on
pages 2–4, 23, 51, 81).

[27] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. Lock-free Concurrent
Level Hashing for Persistent Memory. In: ATC ’20. 2020, 799–812 (cited on

page 51).

[28] Inc. Compute Express Link Consortium. Compute Express Link (CXL) Specification,
Revision 3.0, Version 1.0. https://www.computeexpresslink.org/download- the-

specification. 2022 (cited on pages 100, 102, 104).

[29] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with YCSB. In: SoCC ’10. 2010,
143–154. doi: 10.1145/1807128.1807152 (cited on page 79).

[30] CXL Consortium. Compute Express Link: The Breakthrough CPU-to-Device Intercon-
nect CXL. 2022. url: https://www.computeexpresslink.org/ (cited on pages 4, 18,

100).

113

https://doi.org/10.1145/2983323.2983807
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.14778/3407790.3407850
https://doi.org/10.1145/3373376.3378515
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://doi.org/10.1145/1807128.1807152
https://www.computeexpresslink.org/

[31] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. Maxi-
mizing persistent memory bandwidth utilization for OLAP workloads. In:
SIGMOD ’21. 2021. doi: https://doi.org/10.1145/3448016.3457292 (cited on pages 16,

23, 30, 32, 33, 44, 51, 54, 84, 102).

[32] Benoit Dageville, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q.

Munir, Steven Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, Philipp

Unterbrunner, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,

Jon Bock, Jonathan Claybaugh, Daniel Engovatov, and Martin Hentschel. The
Snowflake Elastic Data Warehouse. In: SIGMOD ’16. 2016, 215–226. doi: 10.
1145/2882903.2903741 (cited on page 53).

[33] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. Rhino:
Efficient Management of Very Large Distributed State for Stream Process-
ing Engines. In: Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. 2020, 2471–2486. doi: 10.1145/3318464.3389723 (cited on

page 86).

[34] Wolfgang Effelsberg and Theo Haerder. Principles of database buffer manage-
ment. ACM Transactions on Database Systems 9:4 (Dec. 5, 1984). 560–595. doi:

10.1145/1994.2022 (cited on page 1).

[35] Ahmed Eldawy, Justin Levandoski, and Per Ake Larson.Trekking through Siberia:
Managing cold data in a memory-optimized database. Proceedings of the
VLDB Endowment 7:11 (2014). 931–942. doi: 10 .14778/2732967 .2732968 (cited

on page 1).

[36] Hewlett Packard Enterprise. HPE NVDIMMs Memory – Overview. 2021. url: https:
//support.hpe.com/hpesc/public/docDisplay?docId=c05302373 (cited on page 11).

[37] Hewlett Packard Enterprise. Server memory and persistent memory population rules
for HPE Gen10 servers with Intel Xeon Scalable processors technical white paper. 2021.
url: https://www.hpe.com/psnow/doc/a00017079enw (cited on page 46).

[38] Facebook. RocksDB. https://rocksdb.org. 2020 (cited on pages 1, 4, 53, 55, 56, 63, 67,

80).

[39] Apache Flink. Table API & SQL. 2021. url: ci.apache.org/projects/flink/flink-docs-
release-1.13/docs/dev/table/overview (cited on page 95).

[40] Apache Flink. Improvement in (de)serialization of keys and values for RocksDB state.
https://issues.apache.org/jira/browse/FLINK-9702. 2020 (cited on page 53).

[41] Pat Gelsinger and Dave Zinsner. Earnings Call Comments from CEO Pat Gelsinger
and CFO Dave Zinsner. https://download.intel.com/newsroom/2022/corporate/Intel-

CEO-CFO-2Q22-earnings-statements.pdf. 2022 (cited on pages 3, 4, 99, 108).

114

https://doi.org/https://doi.org/10.1145/3448016.3457292
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/3318464.3389723
https://doi.org/10.1145/1994.2022
https://doi.org/10.14778/2732967.2732968
https://support.hpe.com/hpesc/public/docDisplay?docId=c05302373
https://support.hpe.com/hpesc/public/docDisplay?docId=c05302373
https://www.hpe.com/psnow/doc/a00017079enw
https://rocksdb.org
ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/table/overview
ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/table/overview
https://issues.apache.org/jira/browse/FLINK-9702
https://download.intel.com/newsroom/2022/corporate/Intel-CEO-CFO-2Q22-earnings-statements.pdf
https://download.intel.com/newsroom/2022/corporate/Intel-CEO-CFO-2Q22-earnings-statements.pdf

[42] Can Gencer, Marko Topolnik, Viliam Ďurina, Emin Demirci, Ensar B. Kahveci,

Ali Gürbüz Ondřej Lukáš, József Bartók, Grzegorz Gierlach, František Hartman,

Ufuk Yılmaz, Mehmet Doğan, Mohamed Mandouh, Marios Fragkoulis, and Asterios

Katsifodimos. Hazelcast Jet: Low-latency Stream Processing at the 99.99th
Percentile. arXiv:2103.10169 [cs] (Mar. 18, 2021) (cited on page 87).

[43] Google. LevelDB, a fast key-value storage library. https://code.google.com/p/leveldb.

2020 (cited on pages 53, 63, 67, 80).

[44] Philipp Götze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. Data structure
primitives on persistent memory: an evaluation. In: DaMoN ’20. 2020, 14:1–
14:3. doi: 10.1145/3399666.3399900 (cited on pages 53, 54).

[45] Philipp M. Grulich, Sebastian Breß, Steffen Zeuch, Jonas Traub, Janis von Bleichert,

Zongxiong Chen, Tilmann Rabl, and Volker Markl.Grizzly: Efficient StreamPro-
cessing Through Adaptive Query Compilation. In: SIGMOD ’20. 2020, 2487–
2503. doi: 10.1145/3318464.3389739 (cited on pages 83, 87, 88, 90, 91, 93, 96, 97).

[46] Tim Gubner and Peter Boncz. Charting the design space of query execution
using VOILA. PVLDB 14:6 (2021). 1067–1079. doi: 10 .14778/3447689.3447709

(cited on page 94).

[47] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Understanding the idiosyn-
crasies of real persistent memory. Proceedings of the VLDB Endowment 14:4
(2020). 626–639. doi: 10.14778/3436905.3436921 (cited on pages 3, 23, 30, 51).

[48] Xiaochen Guo, Engin Ipek, and Tolga Soyata. Resistive Computation: Avoiding
the PowerWall with Low-Leakage, STT-MRAMBased Computing. In: ISCA
’10. 2010, 371–382. doi: 10.1145/1815961.1816012 (cited on pages 3, 12).

[49] Gabriel Haas,Michael Haubenschild, andViktor Leis.ExploitingDirectly-Attached
NVMe Arrays in DBMS. In: CIDR ’20. 2020 (cited on page 2).

[50] Gabriel Haas and Viktor Leis. What Modern NVMe Storage Can Do, and
How to Exploit it: High-Performance I/O for High-Performance Storage
Engines. Proceedings of the VLDB Endowment 16:9 (July 10, 2023). 2090–2102. doi:

10.14778/3598581.3598584 (cited on page 15).

[51] HdrHistogram.HdrHistogram: A high dynamic range histogram. http://hdrhistogram.

org. 2020 (cited on page 79).

[52] Yuliang He, Duo Lu, Kaisong Huang, and TianzhengWang.Evaluating Persistent
Memory Range Indexes: Part Two. arXiv:2201.13047 [cs] (Jan. 31, 2022) (cited
on pages 39, 42).

[53] Uwe Heinz. SAP HANA and Persistent Memory. 2020. url: https://blogs.sap.com/

2020/01/30/sap-hana-and-persistent-memory (cited on page 12).

115

https://code.google.com/p/leveldb
https://doi.org/10.1145/3399666.3399900
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.14778/3447689.3447709
https://doi.org/10.14778/3436905.3436921
https://doi.org/10.1145/1815961.1816012
https://doi.org/10.14778/3598581.3598584
http://hdrhistogram.org
http://hdrhistogram.org
https://blogs.sap.com/2020/01/30/sap-hana-and-persistent-memory
https://blogs.sap.com/2020/01/30/sap-hana-and-persistent-memory

[54] Daokun Hu, Zhiwen Chen, Wenkui Che, Jianhua Sun, and Hao Chen. Halo: A
Hybrid PMem-DRAM Persistent Hash Index with Fast Recovery. In: Pro-
ceedings of the 2022 International Conference on Management of Data. 2022, 1049–
1063. doi: 10.1145/3514221.3517884 (cited on page 7).

[55] Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. Persistent
MemoryHash Indexes: AnExperimental Evaluation. Proceedings of the VLDB
Endowment 14:5 (2021). 785–798 (cited on page 72).

[56] Kaisong Huang, Tianzheng Wang, Darien Imai, and Dong Xie. SSDs Striking
Back:The Storage Jungle and Its Implications on Persistent Indexes. In:
CIDR ’22. 2022, 1–8 (cited on pages 15, 51).

[57] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and

Steve Byan. Closing the Performance Gap Between Volatile and Persistent
Key-Value Stores Using Cross-Referencing Logs. In: ATC ’18. 2018, 967–979
(cited on page 70).

[58] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. Endurable
Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In: 16th
USENIX Conference on File and Storage Technologies (FAST 18). 2018, 187–200

(cited on pages 2, 39, 41, 101).

[59] Intel. Ice Lake Hardware Events. 2023. url: https://perfmon-events.intel.com/

icelake.html (cited on page 41).

[60] Intel. Intel Optane DC Persistent Memory Product Brief. 2019. url: https://www.

intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-

persistent-memory-brief.pdf (cited on pages 11, 14, 15, 30–32).

[61] Intel. Intel Optane Persistent Memory 200 Series Brief. 2020. url: https://www.intel.

de/content/www/de/de/products/docs/memory- storage/optane-persistent-

memory/optane-persistent-memory-200-series-brief.html (cited on pages 14, 15,

20, 30).

[62] Intel. Intel Xeon Processors. 2021. url: https://www.intel.com/content/www/us/en/

products/details/processors/xeon.html (cited on page 17).

[63] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic
Architecture. 2021. url: https://software.intel.com/content/dam/develop/external/

us/en/documents-tps/253665-sdm-vol-1.pdf (cited on pages 19, 29).

[64] Intel. Intel® Cascade Lake. 2019. url: https://www.intel.com/content/www/us/en/

products/platforms/details/cascade-lake.html (cited on page 14).

[65] Intel. Intel® Ice Lake SP. 2019. url: https://www.intel.com/content/www/us/en/

products/platforms/details/ice-lake-sp.html (cited on page 14).

116

https://doi.org/10.1145/3514221.3517884
https://perfmon-events.intel.com/icelake.html
https://perfmon-events.intel.com/icelake.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.de/content/www/de/de/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.de/content/www/de/de/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.de/content/www/de/de/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/253665-sdm-vol-1.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/253665-sdm-vol-1.pdf
https://www.intel.com/content/www/us/en/products/platforms/details/cascade-lake.html
https://www.intel.com/content/www/us/en/products/platforms/details/cascade-lake.html
https://www.intel.com/content/www/us/en/products/platforms/details/ice-lake-sp.html
https://www.intel.com/content/www/us/en/products/platforms/details/ice-lake-sp.html

[66] Intel. Intel® Optane×2122 Persistent Memory 300 Series Brief. 2022. url: https :
//www.colfax-intl.com/downloads/intel-optane-persistent-memory-300-series-

brief.pdf (cited on pages 14, 15).

[67] Intel. Intel® Sapphire Rapids. 2023. url: https://www.intel.com/content/www/

us/en/developer/articles/technical/fourth-generation-xeon- scalable- family-

overview.html (cited on page 14).

[68] Intel. Optimizing Write Ahead Logging with Intel Optane Persistent Memory. 2020.
url: https://software.intel.com/content/www/us/en/develop/articles/optimizing-

write - ahead - logging -with - intel - optane - persistent -memory.html (cited on

pages 27, 30).

[69] Intel. Intel Optane Persistent Memory. https://intel.com/optanedcpersistentmemory.

2020 (cited on pages 1, 54, 58, 75).

[70] Intel. TBB concurrent hash map. https://software.intel.com/en-us/node/506077.

2020 (cited on page 70).

[71] Joseph Izraelevitz, Jian Yang, Lu Zhang, JunoKim, Xiao Liu, AmirsamanMemaripour,

Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven

Swanson. Basic Performance Measurements of the Intel Optane DC Persis-
tent Memory Module. arXiv:1903.05714 [cs] (Aug. 9, 2019) (cited on pages 30, 51,

53, 56, 81).

[72] JEDEC. Byte Addressable Energy Backed Interface. 2020. url: https://www.jedec.

org/standards-documents/docs/jesd245a (cited on page 12).

[73] JEDEC. DDR4 NVDIMM-P Bus Protocol. 2021. url: https://www.jedec.org/standards-

documents/docs/jesd304-401 (cited on page 12).

[74] JEDEC. JEDEC Publishes DDR4 NVDIMM-P Bus Protocol Standard. 2021. url: https:
//www.jedec.org/news/pressreleases/jedec-publishes-ddr4-nvdimm-p-bus-

protocol-standard (cited on page 12).

[75] JEDEC. Memory Configurations: JESD21-C. 2023. url: https://www.jedec.org/

category/technology- focus- area/memory- configurations- jesd21- c (cited on

page 18).

[76] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli, and

Vijay Chidambaram. SplitFS: reducing software overhead in file systems for
persistent memory. In: SOSP ’19. 2019, 494–508. doi: 10.1145/3341301.3359631
(cited on page 51).

[77] Vasiliki Kalavri and John Liagouris. In support of workload-aware streaming
state management. In: 12th USENIXWorkshop on Hot Topics in Storage and File

Systems (HotStorage 20). 2020 (cited on page 88).

117

https://www.colfax-intl.com/downloads/intel-optane-persistent-memory-300-series-brief.pdf
https://www.colfax-intl.com/downloads/intel-optane-persistent-memory-300-series-brief.pdf
https://www.colfax-intl.com/downloads/intel-optane-persistent-memory-300-series-brief.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-write-ahead-logging-with-intel-optane-persistent-memory.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-write-ahead-logging-with-intel-optane-persistent-memory.html
https://intel.com/optanedcpersistentmemory
https://software.intel.com/en-us/node/506077
https://www.jedec.org/standards-documents/docs/jesd245a
https://www.jedec.org/standards-documents/docs/jesd245a
https://www.jedec.org/standards-documents/docs/jesd304-401
https://www.jedec.org/standards-documents/docs/jesd304-401
https://www.jedec.org/news/pressreleases/jedec-publishes-ddr4-nvdimm-p-bus-protocol-standard
https://www.jedec.org/news/pressreleases/jedec-publishes-ddr4-nvdimm-p-bus-protocol-standard
https://www.jedec.org/news/pressreleases/jedec-publishes-ddr4-nvdimm-p-bus-protocol-standard
https://www.jedec.org/category/technology-focus-area/memory-configurations-jesd21-c
https://www.jedec.org/category/technology-focus-area/memory-configurations-jesd21-c
https://doi.org/10.1145/3341301.3359631

[78] Anuj Kalia, David Andersen, and Michael Kaminsky. Challenges and solutions
for fast remote persistent memory access. In: Proceedings of the 11th ACM
Symposium on Cloud Computing. 2020, 105–119. doi: 10.1145/3419111.3421294
(cited on page 37).

[79] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri

Heiskanen, and Volker Markl. Benchmarking Distributed Stream Processing
Engines. In: ICDE. 2018, 1507–1518 (cited on page 94).

[80] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L

Wolf, Paolo Costa, and Peter Pietzuch. SABER: Window-Based Hybrid Stream
Processing for Heterogeneous Architectures. In: SIGMOD ’16. 2016, 555–569.
doi: 10.1145/2882903.2882906 (cited on pages 83, 87, 88).

[81] Dimitrios Koutsoukos, Raghav Bhartia, Michal Friedman, Ana Klimovic, and Gus-

tavo Alonso.NVM: Is it Not VeryMeaningful for Databases? Proceedings of the
VLDB Endowment 16:10 (Aug. 8, 2023). 2444–2457. doi: 10.14778/3603581.3603586
(cited on page 4).

[82] Dimitrios Koutsoukos, Raghav Bhartia, Ana Klimovic, and Gustavo Alonso. How
to use PersistentMemory in your Database. arXiv:2112.00425 [cs] (Dec. 1, 2021)
(cited on page 46).

[83] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a Distributed Messaging Sys-
tem for Log Processing. In: NetDB. 2011, 1–7 (cited on page 85).

[84] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system.ACM SIGOPS Operating Systems Review 44:2 (Apr. 14, 2010). 35–40.

doi: 10.1145/1773912.1773922 (cited on pages 67, 80).

[85] Per-Ake Larson. Dynamic hash tables. Communications of the ACM 31:4 (Apr. 1,

1988). 446–457. doi: 10.1145/42404.42410 (cited on page 58).

[86] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable dram alternative. In: ISCA ’09. 2009. doi: 10 .
1145/1555754.1555758 (cited on pages 3, 12).

[87] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-

dambaram.Recipe: converting concurrentDRAMindexes to persistent-memory
indexes. In: SOSP ’19. 2019, 462–477. doi: 10 .1145/3341301 .3359635 (cited on

page 51).

[88] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven
parallelism: a NUMA-aware query evaluation framework for the many-
core age. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. 2014, 743–754. doi: 10 . 1145 / 2588555 . 2610507 (cited on

page 26).

118

https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/2882903.2882906
https://doi.org/10.14778/3603581.3603586
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/42404.42410
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/2588555.2610507

[89] Viktor Leis,Michael Haubenschild, Alfons Kemper, and ThomasNeumann.LeanStore:
In-MemoryDataManagement beyondMainMemory. In: ICDE ’18. 2018, 185–
196. doi: 10.1109/ICDE.2018.00026 (cited on pages 1, 88, 90).

[90] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Will-

halm. Evaluating persistent memory range indexes. Proceedings of the VLDB
Endowment 13:4 (Dec. 9, 2019). 574–587. doi: 10.14778/3372716.3372728 (cited on

pages 43, 67, 76, 81).

[91] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. Enabling low
tail latency onmulticore key-value stores. Proceedings of the VLDB Endowment
13:7 (Mar. 1, 2020). 1091–1104. doi: 10.14778/3384345.3384356 (cited on pages 2, 4,

23, 51, 53, 55, 81, 94).

[92] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-Tree: A B-tree for new
hardware platforms. In: 2013 IEEE 29th International Conference on Data Engi-
neering (ICDE). 2013, 302–313. doi: 10.1109/ICDE.2013.6544834 (cited on page 1).

[93] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker. No
Pane, No Gain: Efficient Evaluation of Sliding-Window Aggregates over
Data Streams. ACM SIGMOD Record 34:1 (2005). 39–44 (cited on page 86).

[94] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman.

Algorithmic improvements for fast concurrent Cuckoohashing. In: EuroSys
’14. 2014, 1–14. doi: 10.1145/2592798.2592820 (cited on page 58).

[95] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA:
a holistic approach to fast in-memory key-value storage. In: NSDI’ 14. 2014,
429–444 (cited on page 80).

[96] Hao Liu, Linpeng Huang, Yanmin Zhu, and Yanyan Shen. LibreKV: A Persistent
In-MemoryKey-Value Store. IEEE Transactions on Emerging Topics in Computing
(2017). 1–1. doi: 10.1109/TETC.2017.2787341 (cited on page 81).

[97] Jihang Liu, Shimin Chen, and Lujun Wang. LB+Trees: optimizing persistent
index performance on 3DXPointmemory. Proceedings of the VLDB Endowment
13:7 (Mar. 1, 2020). 1078–1090. doi: 10.14778/3384345.3384355 (cited on pages 2, 3,

23, 28, 35, 42, 46, 51, 81).

[98] Ruicheng Liu, Peiquan Jin, Xiaoliang Wang, Zhou Zhang, Shouhong Wan, and

Bei Hua. NVLevel: A High Performance Key-Value Store for Non-Volatile
Memory. In: HPCC/SmartCity/DSS ’19. 2019, 1020–1027. doi: 10 .1109/HPCC/

SmartCity/DSS.2019.00146 (cited on pages 54, 81).

[99] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. PMTest:
A Fast and Flexible Testing Framework for Persistent Memory Programs.
In: ASPLOS ’19. 2019, 411–425. doi: 10.1145/3297858.3304015 (cited on page 19).

119

https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3384345.3384356
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1109/TETC.2017.2787341
https://doi.org/10.14778/3384345.3384355
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00146
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00146
https://doi.org/10.1145/3297858.3304015

[100] Zhiye Liu. Fujitsu Targets 2019 for NRAM Mass Production. 2018. url: https://www.

tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html

(cited on pages 3, 12).

[101] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: scalable hash-
ing on persistent memory. Proceedings of the VLDB Endowment 13:8 (Apr. 1,

2020). 1147–1161. doi: 10.14778/3389133.3389134 (cited on pages 3, 23, 28, 35, 37,

39, 40, 51, 54, 58, 60, 61, 64, 66, 70, 81, 99, 101).

[102] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. WiscKey: Separating
Keys fromValues in SSD-Conscious Storage.ACM Transactions on Storage 13:1
(Mar. 2, 2017). 5:1–5:28. doi: 10.1145/3033273 (cited on pages 67, 80).

[103] Kelly Lyon. How Intel Optimized RocksDB Code for Persistent Memory with PMDK.
https://software.intel.com/content/www/us/en/develop/articles/how- intel-

optimized-rocksdb-code-for-persistent-memory-with-pmdk.html. 2021 (cited on

page 69).

[104] Kazuaki Maeda. Performance evaluation of object serialization libraries in
XML, JSON and binary formats. In: DICTAP ’12. 2012, 177–182. doi: 10.1109/
DICTAP.2012.6215346 (cited on page 53).

[105] AntonMalakhov.Per-bucket concurrent rehashing algorithms. arXiv:1509.02235
[cs] (Sept. 7, 2015) (cited on page 58).

[106] Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, and Tilmann Rabl. Evaluating Multi-
GPU Sorting with Modern Interconnects. In: Proceedings of the 2022 Interna-
tional Conference on Management of Data. 2022, 1795–1809. doi: 10.1145/3514221.
3517842 (cited on page 51).

[107] Tobias Maltenberger, Till Lehmann, Lawrence Benson, and Tilmann Rabl. Evaluat-
ing In-Memory Hash Joins on Persistent Memory. In: EDBT ’22. 2022, 2:368–
2:372. doi: 10.48786/edbt.2022.23.

[108] Mellanox. 200Gb/s ConnectX-6 Ethernet Single/Dual-Port Adapter IC. 2021. url:
www.mellanox.com/products/ethernet-adapter-ic/connectx-6-en-ic (cited on

page 94).

[109] Memcached. Memcached, high-performance, distributed memory object caching
system. https://memcached.org/. 2020 (cited on pages 55, 80).

[110] Prashanth Menon, Tilmann Rabl, Mohammad Sadoghi, and Hans-Arno Jacobsen.

CaSSanDra: An SSD boosted key-value store. In: ICDE ’14. 2014, 1162–1167.
doi: 10.1109/ICDE.2014.6816732 (cited on page 80).

[111] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn

Mckinley, and Felix Xiaozhu Lin. StreamBox: Modern Stream Processing on a
Multicore Machine. In: ATC. 2017, 617–629 (cited on pages 87, 90, 91).

120

https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/3033273
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://doi.org/10.1109/DICTAP.2012.6215346
https://doi.org/10.1109/DICTAP.2012.6215346
https://doi.org/10.1145/3514221.3517842
https://doi.org/10.1145/3514221.3517842
https://doi.org/10.48786/edbt.2022.23
www.mellanox.com/products/ethernet-adapter-ic/connectx-6-en-ic
https://memcached.org/
https://doi.org/10.1109/ICDE.2014.6816732

[112] mmap. mmap(2): map/unmap files/devices into memory - Linux man page. https:
//linux.die.net/man/2/mmap. 2020 (cited on page 60).

[113] Moohyeon Nam, Hokeun Cha, Young-Ri Choi, Sam H. Noh, and Beomseok Nam.

Write-optimized dynamic hashing for persistentmemory. In: FAST ’19. 2019,
31–44 (cited on pages 51, 58, 69).

[114] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R.

Chakrabarti, and Michael L. Scott. Dalí: A Periodically Persistent Hash Map.
In: DISC ’17. 2017, 37:1–37:16. doi: 10.4230/LIPIcs.DISC.2017.37 (cited on pages 54,

58).

[115] Ian Neal, Andrew Quinn, and Baris Kasikci. Hippocrates: healing persistent
memory bugs without doing any harm. In: Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 2021, 401–414. doi: 10.1145/3445814.3446694 (cited on page 104).

[116] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter,

and Baris Kasikci. AGAMOTTO: How Persistent is your Persistent Memory
Application? In: OSDI ’20. 2020, 1047–1064 (cited on pages 20, 104).

[117] Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan, Youngjin Kwon, Simon Peter,

and Baris Kasikci. Rethinking File Mapping for Persistent Memory. In: 19th
USENIX Conference on File and Storage Technologies (FAST 21). 2021, 97–111

(cited on page 51).

[118] Thomas Neumann. Efficiently compiling efficient query plans for modern
hardware. PVLDB 4:9 (June 1, 2011). 539–550. doi: 10.14778/2002938.2002940

(cited on pages 93, 96).

[119] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K page
replacement algorithm for database disk buffering. ACM SIGMOD Record
22:2 (June 1, 1993). 297–306. doi: 10.1145/170036.170081 (cited on page 1).

[120] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-
structured merge-tree (LSM-tree). Acta Informatica 33:4 (June 1, 1996). 351–385.
doi: 10.1007/s002360050048 (cited on page 53).

[121] Matt Ogle, Trent Bates, Bruce Wagner, and Rene Franco. How to Balance Memory
on 2nd Generation Intel Xeon Scalable Processors. 2021. url: https://downloads.dell.
com/manuals/common/balancing_memory_xeon_2nd_gen.pdf (cited on page 47).

[122] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas Will-

halm. SOFORT: a hybrid SCM-DRAM storage engine for fast data recovery.
In: DaMoN ’14. 2014, 1–7. doi: 10.1145/2619228.2619236 (cited on page 51).

121

https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://doi.org/10.4230/LIPIcs.DISC.2017.37
https://doi.org/10.1145/3445814.3446694
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/170036.170081
https://doi.org/10.1007/s002360050048
https://downloads.dell.com/manuals/common/balancing_memory_xeon_2nd_gen.pdf
https://downloads.dell.com/manuals/common/balancing_memory_xeon_2nd_gen.pdf
https://doi.org/10.1145/2619228.2619236

[123] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang

Lehner. FPTree: A hybrid SCM-DRAMpersistent and concurrent B-Tree for
Storage Class Memory. In: SIGMOD ’16. 2016, 371–386. doi: 10.1145/2882903.
2915251 (cited on pages 2, 3, 23, 28, 35, 37, 39, 42, 51, 54, 56, 60, 61, 64, 70, 81).

[124] PMDK. Persistent memory programming. https://pmem.io/pmdk. 2020 (cited on

pages 20, 69, 70, 82).

[125] PmemKV. pmemkv, key/value datastore for persistent memory. https://pmem.io/

pmemkv. 2020 (cited on page 70).

[126] PmemObj++. libpmemobj++ concurrent hash map. https : / /github.com/pmem/

libpmemobj-cpp. 2020 (cited on page 70).

[127] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable
highperformancemainmemory systemusing phase-changememory tech-
nology. In: ISCA ’09. 2009. doi: 10.1145/1555754.1555760 (cited on pages 3, 12).

[128] Redis. Redis, an in-memory data structure store. https://redis.io. 2020 (cited on

pages 4, 53, 55, 80).

[129] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi

Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato.Managing
Non-Volatile Memory in Database Systems. In: SIGMOD ’18. 2018, 1541–1555.
doi: 10.1145/3183713.3196897 (cited on pages 2, 51, 54, 81, 99).

[130] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons

Kemper. Building blocks for persistent memory. The VLDB Journal (Sept. 23,
2020). doi: 10.1007/s00778-020-00622-9 (cited on pages 23, 30, 33, 67, 76).

[131] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. NVC-
Hashmap: A Persistent and Concurrent Hashmap For Non-Volatile Mem-
ories. In: IMDM ’15. 2015, 4:1–4:8. doi: 10.1145/2803140.2803144 (cited on page 58).

[132] Pradeep Shetty, Richard Spillane, RavikantMalpani, BineshAndrews, Justin Seyster,

and Erez Zadok. Building workload-independent storage with VT-trees. In:
FAST ’13. 2013, 17–30 (cited on page 80).

[133] Julian Shun and Guy E. Blelloch. Phase-concurrent hash tables for determin-
ism. In: SPAA ’14. 2014, 96–107. doi: 10.1145/2612669.2612687 (cited on page 58).

[134] SNIA. NVM Programming Model (NPM). 2021. url: https://www.snia.org/tech_

activities/standards/curr_standards/npm (cited on pages 11, 15).

[135] Dell Technologies. Dell Rack Servers. 2022. url: https://www.dell.com/de-de/work/

shop/deals/enterprise-deals/poweredge-rack-server-deals (cited on pages 47, 103).

[136] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten Binnig.

DFI: TheData Flow Interface forHigh-SpeedNetworks. In: SIGMOD ’21. 2021,
1825–1837. doi: 10.1145/3448016.3452816 (cited on page 94).

122

https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/2882903.2915251
https://pmem.io/pmdk
https://pmem.io/pmemkv
https://pmem.io/pmemkv
https://github.com/pmem/libpmemobj-cpp
https://github.com/pmem/libpmemobj-cpp
https://doi.org/10.1145/1555754.1555760
https://redis.io
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1007/s00778-020-00622-9
https://doi.org/10.1145/2803140.2803144
https://doi.org/10.1145/2612669.2612687
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.dell.com/de-de/work/shop/deals/enterprise-deals/poweredge-rack-server-deals
https://www.dell.com/de-de/work/shop/deals/enterprise-deals/poweredge-rack-server-deals
https://doi.org/10.1145/3448016.3452816

[137] Jonas Traub, Philipp Grulich, Alejandro Rodríguez Cuéllar, Sebastian Breß, Asterios

Katsifodimos, Tilmann Rabl, and Volker Markl. Efficient Window Aggregation
with General Stream Slicing. In: EDBT. 2019, 97–108 (cited on page 86).

[138] Alexander Van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons

Kemper. Persistent memory I/O primitives. In: DaMoN ’19. 2019, 12:1–12:7. doi:
10.1145/3329785.3329930 (cited on pages 3, 37, 51, 53, 81).

[139] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali

Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. Drizzle: Fast and
Adaptable Stream Processing at Scale. In: SOSP ’17. 2017, 374–389. doi: 10.1145/
3132747.3132750 (cited on page 87).

[140] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Jana Giceva, Thomas Neu-

mann, and Alfons Kemper. Plush: a write-optimized persistent log-structured
hash-table. Proceedings of the VLDB Endowment 15:11 (July 1, 2022). 2895–2907.

doi: 10.14778/3551793.3551839 (cited on page 7).

[141] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: lightweight
persistent memory. ACM SIGARCH Computer Architecture News 39:1 (Mar. 5,

2011). 91–104. doi: 10.1145/1961295.1950379 (cited on pages 23, 51).

[142] JingWang, Youyou Lu, QingWang,Minhui Xie, Keji Huang, and Jiwu Shu.Pacman:
An Efficient Compaction Approach for {Log-Structured} {Key-Value} Store
on Persistent Memory. In: 2022 USENIX Annual Technical Conference (USENIX

ATC 22). 2022, 773–788 (cited on page 7).

[143] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. Easy Lock-Free Index-
ing in Non-Volatile Memory. In: ICDE ’18. 2018, 461–472. doi: 10.1109/ICDE.
2018.00049 (cited on page 61).

[144] YinjunWu, Kwanghyun Park, Rathijit Sen, Brian Kroth, and Jaeyoung Do. Lessons
learned from the early performance evaluation of Intel optane DC persis-
tent memory in DBMS. In: Proceedings of the 16th International Workshop on
Data Management on New Hardware. 2020, 1–3. doi: 10.1145/3399666.3399898
(cited on page 46).

[145] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: a hybrid index key-
value store for DRAM-NVM memory systems. In: ATC ’17. 2017, 349–362
(cited on pages 2, 54, 81).

[146] Jian Xu and Steven Swanson.NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories. In: FAST ’16. 2016, 323–338 (cited on

page 51).

123

https://doi.org/10.1145/3329785.3329930
https://doi.org/10.1145/3132747.3132750
https://doi.org/10.1145/3132747.3132750
https://doi.org/10.14778/3551793.3551839
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1109/ICDE.2018.00049
https://doi.org/10.1109/ICDE.2018.00049
https://doi.org/10.1145/3399666.3399898

[147] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swanson.

An Empirical Guide to the Behavior and Use of Scalable Persistent Mem-
ory. In: FAST ’20. 2020, 169–182 (cited on pages 2, 3, 23, 30, 33, 51, 53, 54, 56, 58, 80,

81, 84).

[148] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and

Bingsheng He. NV-Tree: reducing consistency cost for NVM-based single
level systems. In: FAST ’15. 2015, 167–181 (cited on pages 2, 3, 28, 35, 54, 56, 70,

81).

[149] Wang Yue, Lawrence Benson, and Tilmann Rabl.Desis: EfficientWindowAggre-
gation in Decentralized Networks. In: Proceedings 26th International Conference
on Extending Database Technology (EDBT ’23). 2023, 618–631. doi: 10.48786/edbt.
2023.52.

[150] Matei Zaharia, Scott Shenker, Haoyuan Li, Tathagata Das, Timothy Hunter, and Ion

Stoica. Discretized streams: fault-tolerant streaming computation at scale.
In: SOSP ’13. 2013, 423–438. doi: 10.1145/2517349.2522737 (cited on pages 4, 53, 87).

[151] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel

Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. Analyzing
Efficient Stream Processing on Modern Hardware. Proceedings of the VLDB
Endowment 12:5 (2019). 516–530. doi: 10.14778/3303753.3303758 (cited on pages 83,

88, 94).

[152] Shuhao Zhang, Bingsheng He, Daniel Dahlmeier, Amelie Chi Zhou, and Thomas

Heinze. Revisiting the Design of Data Stream Processing Systems onMulti-
Core Processors. In: ICDE ’17. 2017, 659–670. doi: 10.1109/ICDE.2017.119 (cited
on pages 83, 88, 94).

[153] Shuhao Zhang, Jiong He, Amelie Chi Zhou, and Bingsheng He. BriskStream: Scal-
ing Data Stream Processing on Shared-Memory Multicore Architectures.
In: SIGMOD ’19. 2019, 705–722. doi: 10.1145/3299869.3300067 (cited on pages 83,

87, 88).

[154] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang.Adurable and energy efficient
main memory using phase change memory technology. In: ISCA ’09. 2009.
doi: 10.1145/1555754.1555759 (cited on pages 3, 12).

[155] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. Spitfire: A Three-
Tier Buffer Manager for Volatile and Non-Volatile Memory. In: Proceedings
of the 2021 International Conference on Management of Data. 2021, 2195–2207. doi:
10.1145/3448016.3452819 (cited on page 2).

[156] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. DPTree: differen-
tial indexing for persistent memory. Proceedings of the VLDB Endowment 13:4
(Dec. 9, 2019). 421–434. doi: 10.14778/3372716.3372717 (cited on pages 35, 51, 81).

124

https://doi.org/10.48786/edbt.2023.52
https://doi.org/10.48786/edbt.2023.52
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.1109/ICDE.2017.119
https://doi.org/10.1145/3299869.3300067
https://doi.org/10.1145/1555754.1555759
https://doi.org/10.1145/3448016.3452819
https://doi.org/10.14778/3372716.3372717

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Contribution
	1.3 Technical Contributions and Impact
	1.4 Additional Contributions
	1.5 Thesis Outline

	2 Background
	2.1 Persistent Memory
	2.1.1 Types
	2.1.2 Intel Optane
	2.1.3 Accessing Persistent Memory
	2.1.4 Atomicity and Durability
	2.1.5 Programming Interfaces and APIs

	3 Benchmarking Persistent Memory Access
	3.1 Introduction
	3.2 Introducing PerMA-Bench
	3.2.1 Runtime
	3.2.2 Custom Workloads and Configuration
	3.2.3 Persist Instructions

	3.3 PerMA-Bench Results
	3.3.1 Setup And Methodology
	3.3.2 Raw Performance Workloads – Bandwidth
	3.3.3 Raw Performance Workloads - Latency
	3.3.4 Database-Related Workloads
	3.3.5 Single Server Performance

	3.4 Server Price-Performance
	3.5 Discussion
	3.6 Related Work
	3.7 Conclusion

	4 Viper: An Efficient Hybrid PMem-DRAM Key-Value Store
	4.1 Introduction
	4.2 Background
	4.3 Viper: A Hybrid Key-Value Store
	4.3.1 Hybrid Design
	4.3.2 Architecture

	4.4 Key-Value Store Operations
	4.4.1 Viper Client
	4.4.2 Put
	4.4.3 Get
	4.4.4 Update
	4.4.5 Delete
	4.4.6 Space Reclamation
	4.4.7 Recovery

	4.5 Evaluation
	4.5.1 Setup and Methodology
	4.5.2 Other Systems
	4.5.3 Micro Benchmarks
	4.5.4 YCSB

	4.6 Related Work
	4.7 Conclusion

	5 Darwin: Scale-In Stream Processing
	5.1 Introduction
	5.2 Background
	5.3 Current SPE Challenges
	5.3.1 Focus of Existing Systems
	5.3.2 State Management
	5.3.3 Resource Inefficiency
	5.3.4 Overall System Optimization

	5.4 Scale-In Stream Processing
	5.4.1 Opportunities for State Management
	5.4.2 Opportunities for Resource Inefficiency
	5.4.3 Opportunities for System Optimization

	5.5 Introducing Darwin
	5.5.1 Darwin Architecture
	5.5.2 Performance

	5.6 Conclusion

	6 What We Can Learn from Persistent Memory for CXL
	6.1 Introduction
	6.2 Compute Express Link
	6.3 Transferring Insights from PMem to CXL-Attached Memory
	6.4 Conclusion

	7 Conclusion & Outlook
	7.1 Conclusion
	7.2 Research Outlook

	References

