Solid-state drives (SSDs) have improved database system performance significantly due to the higher bandwidth that they provide over traditional hard disk drives. Persistent memory (PMem) is a new storage technology that offers DRAM-like speed at SSD-like capacity. Due to its byte-addressability, research has mainly treated PMem as a replacement of, or an addition to DRAM, e.g., by proposing highly-optimized, DRAM-PMem-hybrid data structures and system designs. However, PMem can also be used via a regular file system interface and standard Linux I/O operations. In this paper, we analyze PMem as a drop-in replacement for Non-Volatile Memory Express (NVMe) SSDs and evaluate possible performance gains while requiring no or only minor changes to existing applications. This drop-in approach speeds-up database systems like Postgres, without requiring any code changes. We systematically evaluate PMem and NVMe SSDs in three database microbenchmarks and the widely used TPC-H benchmark on Postgres. Our experiments show that PMem outperforms a RAID of four NVMe SSDs in read-intensive OLAP workloads by up to 4x without any modifications while achieving similar performance in write-intensive workloads. Finally, we give four practical insights to aid decision-making on when to use PMem as an SSD drop-in replacement and how to optimize for it.